P1962 斐波那契数列

题面是这样的,其实斐波那契我们之前也有接触过,并不是什么太陌生的玩意,第一个想到的方法其实是用递归来做,这样的话其实是非常轻松的,but同志们你们有没有关注过这样一个鬼东西

你以为蓝题是让你切着玩的吗??????
果不其然,递归写了一个,大红大紫啊喂
(雾
不过的确过不了就是了,直到我打开了题解,发现了一个叫矩阵快速幂的玩意
Fn表示数列的第n项
那么我们如果把Fn,Fn-1写成蒟阵的形式,可以按照如下推导过程对这个蒟阵进行拆分,从而写成便于计算的形式

其实我们就是把递归用矩阵的方式写了出来,然后想求第n项就直接输出矩阵的n次幂即可
快速幂在另一篇博客里看这里qaq
其实这道题的难点就是矩阵快速幂,既然会了这个的话就没什么大问题啦~
代码如下:
#include<iostream>
#include<algorithm>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<cstdlib>
using namespace std;
typedef long long ll;
typedef long double ld;
typedef pair<int,int> pr;
const double pi=acos(-);
#define rep(i,a,n) for(ll i=a;i<=n;i++)
#define per(i,n,a) for(ll i=n;i>=a;i--)
#define Rep(i,u) for(int i=head[u];i;i=Next[i])
#define clr(a) memset(a,0,sizeof a)
#define pb push_back
#define mp make_pair
#define fi first
#define sc second
ld eps=1e-;
ll pp=;
ll mo(ll a,ll pp){if(a>= && a<pp)return a;a%=pp;if(a<)a+=pp;return a;}
ll powmod(ll a,ll b,ll pp){ll ans=;for(;b;b>>=,a=mo(a*a,pp))if(b&)ans=mo(ans*a,pp);return ans;}
ll read(){
ll ans=;
char last=' ',ch=getchar();
while(ch<'' || ch>'')last=ch,ch=getchar();
while(ch>='' && ch<='')ans=ans*+ch-'',ch=getchar();
if(last=='-')ans=-ans;
return ans;
}
//head 从这里开始哦
struct matrix{
ll a[][];
};//注意这里要用ll保证不会爆
matrix operator *(matrix a, matrix b){//定义*运算
matrix c;
rep(i,,)//简写的方式,for(int i =1;i<=n;++i)
rep(j,,){
c.a[i][j]=;
rep(k,,)
c.a[i][j] = (c.a[i][j]+a.a[i][k]*b.a[k][j])%pp;
}
return c;
}
ll k;
int main(){
cin>>k;
matrix a;
a.a[][]=;a.a[][]=;
a.a[][]=;a.a[][]=;
matrix ans;
ans.a[][]=;ans.a[][]=;
ans.a[][]=;ans.a[][]=;//把ans初始化为单位矩阵
ll b=k-;
while(b){
if(b&)ans=ans*a;
a=a*a;
b/=;
}//一个快速幂
ll fk = (ans.a[][]+ ans.a[][])%pp;
cout<<fk<<endl;//O(log B *2^3)
}
P1962 斐波那契数列的更多相关文章
- 洛谷P1962 斐波那契数列 || P1349 广义斐波那契数列[矩阵乘法]
P1962 斐波那契数列 大家都知道,斐波那契数列是满足如下性质的一个数列: • f(1) = 1 • f(2) = 1 • f(n) = f(n-1) + f(n-2) (n ≥ 2 且 n 为整数 ...
- 洛谷P1962 斐波那契数列【矩阵运算】
洛谷P1962 斐波那契数列[矩阵运算] 题目背景 大家都知道,斐波那契数列是满足如下性质的一个数列: • f(1) = 1 • f(2) = 1 • f(n) = f(n-1) + f(n-2) ( ...
- 洛谷——P1962 斐波那契数列
P1962 斐波那契数列 题目背景 大家都知道,斐波那契数列是满足如下性质的一个数列: • f(1) = 1 • f(2) = 1 • f(n) = f(n-1) + f(n-2) (n ≥ 2 且 ...
- P1962 斐波那契数列 【矩阵快速幂】
一.题目 P1962 斐波那契数列 二.分析 比较基础的递推式转换为矩阵递推,这里因为$n$会超出$int$类型,所以需要用矩阵快速幂加快递推. 三.AC代码 1 #include <bits/ ...
- Luogu P1962 斐波那契数列(矩阵乘法模板)
传送门(其实就是求斐波那契数列....) 累了 明天再解释 做这道题需要一些关于矩阵乘法的基础知识. 1. 矩阵乘法的基础运算 只有当矩阵A的列数等于矩阵B的行数时,A与B可以相乘(A的行数不一定等于 ...
- 洛谷—— P1962 斐波那契数列
https://www.luogu.org/problem/show?pid=1962 题目背景 大家都知道,斐波那契数列是满足如下性质的一个数列: • f(1) = 1 • f(2) = 1 • f ...
- [luogu P1962] 斐波那契数列(带快速幂矩阵乘法模板)
题目背景 大家都知道,斐波那契数列是满足如下性质的一个数列: • f(1) = 1 • f(2) = 1 • f(n) = f(n-1) + f(n-2) (n ≥ 2 且 n 为整数) 题目描述 请 ...
- 洛谷P1962 斐波那契数列(矩阵快速幂)
题目背景 大家都知道,斐波那契数列是满足如下性质的一个数列: • f(1) = 1 • f(2) = 1 • f(n) = f(n-1) + f(n-2) (n ≥ 2 且 n 为整数) 题目描述 请 ...
- 洛谷P1962 斐波那契数列题解
题目背景 大家都知道,斐波那契数列是满足如下性质的一个数列: • f(1) = 1 • f(2) = 1 • f(n) = f(n-1) + f(n-2) (n ≥ 2 且 n 为整数) 题目描述 请 ...
- 【洛谷P1962 斐波那契数列】矩阵快速幂+数学推导
来提供两个正确的做法: 斐波那契数列双倍项的做法(附加证明) 矩阵快速幂 一.双倍项做法 在偶然之中,在百度中翻到了有关于斐波那契数列的词条(传送门),那么我们可以发现一个这个规律$ \frac{F_ ...
随机推荐
- ASP.NET C# 连接 Oracle数据库增删改查,事务
一.知识介绍 ①ASP.NET 使用的是MVC模式,开发工具Visual studio ,语言C# ②Oracle是比较重型的数据库,这里主要介绍连接数据库,对数据进行具体的使用 ③Visual St ...
- (办公)TOKEN
token就是HTTP认证,输入正确的token,在放在Authorization header中发送给服务器,认证成功.,就可以正确的拿到接口数据. 举个例子: 第一步: 客户端发送http re ...
- Sublime Text 3 常用插件 —— SFTP
在 Win 下常用 Xftp 软件来和远程服务传递文件,但是要是在项目开发的时候频繁的将远程文件拖到本地编辑然后再传回远程服务器,那真是麻烦无比,但是Sublime中SFTP插件,它让这世界美好了许多 ...
- Linux分页机制之分页机制的实现详解--Linux内存管理(八)
1 linux的分页机制 1.1 四级分页机制 前面我们提到Linux内核仅使用了较少的分段机制,但是却对分页机制的依赖性很强,其使用一种适合32位和64位结构的通用分页模型,该模型使用四级分页机制, ...
- poi包冲突问题(excel)
1. 所需jar包 涉及的poi (1)poi-3.14.jar (HSSF) 依赖:commons-logging-1.2.jar.log4j-1.2.17.jar.commons-codec.1 ...
- CentOS7 Docker私有仓库搭建及删除镜像 【转】
文章来源:centos7 Docker私有仓库搭建及删除镜像 如果不想用私有镜像库,你可以用docker的库 https://hub.docker.com 环境准备 环境:两个装有Docker 17. ...
- Vue项目分环境打包的实现步骤
转:https://blog.csdn.net/xinzi11243094/article/details/80521878 方法一:亲测真的有效 在项目开发中,我们的项目一般分为开发版.测试版.Pr ...
- Java线程锁,synchronized、wait、notify详解
(原) JAVA多线程这一块有点绕,特别是对于锁,对锁机制理解不清的话,程序出现了问题也很难找到原因,在此记录一下线程的执行以及各种锁. 1.JAVA中,每个对象有且只有一把锁(lock),也叫监视器 ...
- Java项目的导入和导出
在很多情况下,需要将当前的 Java工程传递给其他人继续工作, 或协同工作,或者是从其他人那里接收到传递来的Java项目, 就需要掌握 Java项目的导入和导出. 以 Hello World 为例: ...
- Linux内存管理 (15)页面迁移
专题:Linux内存管理专题 关键词:RMAP.页面迁移. 相关章节:反向映射RMAP.内存规整. 页面迁移的初衷是为NUMA系统提供一种将进程迁移到任意内存节点的能力,后来内存规整和内存热插拔场景都 ...