题面是这样的,其实斐波那契我们之前也有接触过,并不是什么太陌生的玩意,第一个想到的方法其实是用递归来做,这样的话其实是非常轻松的,but同志们你们有没有关注过这样一个鬼东西

你以为蓝题是让你切着玩的吗??????

果不其然,递归写了一个,大红大紫啊喂

(雾

不过的确过不了就是了,直到我打开了题解,发现了一个叫矩阵快速幂的玩意

Fn表示数列的第n项

那么我们如果把Fn,Fn-1写成蒟阵的形式,可以按照如下推导过程对这个蒟阵进行拆分,从而写成便于计算的形式

其实我们就是把递归用矩阵的方式写了出来,然后想求第n项就直接输出矩阵的n次幂即可

快速幂在另一篇博客里看这里qaq

其实这道题的难点就是矩阵快速幂,既然会了这个的话就没什么大问题啦~

代码如下:

#include<iostream>
#include<algorithm>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<cstdlib>
using namespace std;
typedef long long ll;
typedef long double ld;
typedef pair<int,int> pr;
const double pi=acos(-);
#define rep(i,a,n) for(ll i=a;i<=n;i++)
#define per(i,n,a) for(ll i=n;i>=a;i--)
#define Rep(i,u) for(int i=head[u];i;i=Next[i])
#define clr(a) memset(a,0,sizeof a)
#define pb push_back
#define mp make_pair
#define fi first
#define sc second
ld eps=1e-;
ll pp=;
ll mo(ll a,ll pp){if(a>= && a<pp)return a;a%=pp;if(a<)a+=pp;return a;}
ll powmod(ll a,ll b,ll pp){ll ans=;for(;b;b>>=,a=mo(a*a,pp))if(b&)ans=mo(ans*a,pp);return ans;}
ll read(){
ll ans=;
char last=' ',ch=getchar();
while(ch<'' || ch>'')last=ch,ch=getchar();
while(ch>='' && ch<='')ans=ans*+ch-'',ch=getchar();
if(last=='-')ans=-ans;
return ans;
}
//head 从这里开始哦
struct matrix{
ll a[][];
};//注意这里要用ll保证不会爆
matrix operator *(matrix a, matrix b){//定义*运算
matrix c;
rep(i,,)//简写的方式,for(int i =1;i<=n;++i)
   rep(j,,){
c.a[i][j]=;
rep(k,,)
c.a[i][j] = (c.a[i][j]+a.a[i][k]*b.a[k][j])%pp;
}
return c;
}
ll k;
int main(){
cin>>k;
matrix a;
a.a[][]=;a.a[][]=;
a.a[][]=;a.a[][]=;
matrix ans;
ans.a[][]=;ans.a[][]=;
ans.a[][]=;ans.a[][]=;//把ans初始化为单位矩阵
ll b=k-;
while(b){
if(b&)ans=ans*a;
a=a*a;
b/=;
}//一个快速幂
ll fk = (ans.a[][]+ ans.a[][])%pp;
cout<<fk<<endl;//O(log B *2^3)
}

P1962 斐波那契数列的更多相关文章

  1. 洛谷P1962 斐波那契数列 || P1349 广义斐波那契数列[矩阵乘法]

    P1962 斐波那契数列 大家都知道,斐波那契数列是满足如下性质的一个数列: • f(1) = 1 • f(2) = 1 • f(n) = f(n-1) + f(n-2) (n ≥ 2 且 n 为整数 ...

  2. 洛谷P1962 斐波那契数列【矩阵运算】

    洛谷P1962 斐波那契数列[矩阵运算] 题目背景 大家都知道,斐波那契数列是满足如下性质的一个数列: • f(1) = 1 • f(2) = 1 • f(n) = f(n-1) + f(n-2) ( ...

  3. 洛谷——P1962 斐波那契数列

    P1962 斐波那契数列 题目背景 大家都知道,斐波那契数列是满足如下性质的一个数列: • f(1) = 1 • f(2) = 1 • f(n) = f(n-1) + f(n-2) (n ≥ 2 且 ...

  4. P1962 斐波那契数列 【矩阵快速幂】

    一.题目 P1962 斐波那契数列 二.分析 比较基础的递推式转换为矩阵递推,这里因为$n$会超出$int$类型,所以需要用矩阵快速幂加快递推. 三.AC代码 1 #include <bits/ ...

  5. Luogu P1962 斐波那契数列(矩阵乘法模板)

    传送门(其实就是求斐波那契数列....) 累了 明天再解释 做这道题需要一些关于矩阵乘法的基础知识. 1. 矩阵乘法的基础运算 只有当矩阵A的列数等于矩阵B的行数时,A与B可以相乘(A的行数不一定等于 ...

  6. 洛谷—— P1962 斐波那契数列

    https://www.luogu.org/problem/show?pid=1962 题目背景 大家都知道,斐波那契数列是满足如下性质的一个数列: • f(1) = 1 • f(2) = 1 • f ...

  7. [luogu P1962] 斐波那契数列(带快速幂矩阵乘法模板)

    题目背景 大家都知道,斐波那契数列是满足如下性质的一个数列: • f(1) = 1 • f(2) = 1 • f(n) = f(n-1) + f(n-2) (n ≥ 2 且 n 为整数) 题目描述 请 ...

  8. 洛谷P1962 斐波那契数列(矩阵快速幂)

    题目背景 大家都知道,斐波那契数列是满足如下性质的一个数列: • f(1) = 1 • f(2) = 1 • f(n) = f(n-1) + f(n-2) (n ≥ 2 且 n 为整数) 题目描述 请 ...

  9. 洛谷P1962 斐波那契数列题解

    题目背景 大家都知道,斐波那契数列是满足如下性质的一个数列: • f(1) = 1 • f(2) = 1 • f(n) = f(n-1) + f(n-2) (n ≥ 2 且 n 为整数) 题目描述 请 ...

  10. 【洛谷P1962 斐波那契数列】矩阵快速幂+数学推导

    来提供两个正确的做法: 斐波那契数列双倍项的做法(附加证明) 矩阵快速幂 一.双倍项做法 在偶然之中,在百度中翻到了有关于斐波那契数列的词条(传送门),那么我们可以发现一个这个规律$ \frac{F_ ...

随机推荐

  1. SQL 百万级数据提高查询速度的方法

    ----------------[转] 1.应尽量避免在 where 子句中使用!=或<>操作符,否则将引擎放弃使用索引而进行全表扫描.2.对查询进行优化,应尽量避免全表扫描,首先应考虑在 ...

  2. 20180831-Linux环境下Python 3.6.6 的安装说明

    20180831-Linux环境下Python 3.6.6 的安装说明 摘要:Python3 安装部署,普通用户,编译安装 Author: andy_yhm@yeah.net Date: 201808 ...

  3. AXI-Lite总线及其自定义IP核使用分析总结

    ZYNQ的优势在于通过高效的接口总线组成了ARM+FPGA的架构.我认为两者是互为底层的,当进行算法验证时,ARM端现有的硬件控制器和库函数可以很方便地连接外设,而不像FPGA设计那样完全写出接口时序 ...

  4. 我认知的javascript之函数调用

    今天刚好周六没事,又由于工作的原因导致早上醒来就睡不着,无聊之下,就想到了 js 的function调用问题.当然,网上也是对javascript的一些事情说得很透了,但我觉得还是有必要把自己的想法说 ...

  5. jpa 分页

    public Page<Stability> testPager(){ Pageable pageable = new PageRequest(1, 10, Sort.Direction. ...

  6. ideal中把项目打成war包,并放在tomcat运行,遇见的问题。。。

    先说下我遇见的问题吧:最近做项目要把项目放在tomcat上运行,用的springboot框架, 在建项目时选择的是  jar包,项目写完要部署打包是,在pom中虽然把包改成了war ,可是每次放入to ...

  7. ElasticSearch(九):elasticsearch-head插件安装

    安装node 安装elasticsearch-head需要node.js的支持. 下载最新的node.js,下载地址:https://nodejs.org/en/download/ 将下载后的安装包放 ...

  8. SQL CREATE DATABASE 语句

    CREATE DATABASE 语句 CREATE DATABASE 用于创建数据库. SQL CREATE DATABASE 语法 CREATE DATABASE database_name SQL ...

  9. git 命令积累

    git status # 查看仓库的状态 git add . # 监控工作区的状态树,使用它会把工作时的所有变化提交到暂存区,包括文件内容修改(modified)以及新文件(new),但不包括被删除的 ...

  10. Vultr CentOS 7 安装 Docker

    前言 最近在梳理公司的架构,想用 VPS 先做一些测试,然后就开始踩坑了!我用 Vultr 新买了个 VPS. 安装的 CentOS 版本: [root@dbn-seattle ~]# cat /et ...