二叉搜索树

二叉搜索树是一种特殊的二叉树,它的特点是:

  • 对于任意一个节点p,存储在p的左子树的中的所有节点中的值都小于p中的值

  • 对于任意一个节点p,存储在p的右子树的中的所有节点中的值都大于p中的值

一个图例:

基于二叉搜索树的这种关系,我们可以用它来实现有序映射

遍历二叉搜索树

基于二叉搜索树的特性,采用中序遍历的方式可以使得遍历结果是按照从小到大的顺序排列的。了解中序遍历可以参考用Python实现数据结构之树

这里还需要思考的一个内容是在基于中序遍历的前提下,如何求一个节点的后继节点或前驱节点。

显然这就是求比该节点大的下一个节点或比它小的前一个节点。我们拿求后继节点为例:

  • 当该节点有右孩子时,那么后继结点就是右子树中最左边的节点

  • 当该节点没有右孩子时,那么后继节点就是第一个是左孩子的祖先的父节点

算法用伪代码表示为:


def after(p):
"""寻找二叉搜索树的后继节点的伪代码""" if right(p) is not None:
walk = right(p)
while left(right(p)) is not None: # 找最左
walk = left(walk)
return walk
else:
walk = p
ancestor = parent(walk)
while ancestor is not None and walk == right(ancestor): # 当walk是左孩子时或walk是根节点时停止
walk = ancestor
ancestor = parent(walk)
return ancestor

找前驱同理

搜索

既然叫做二叉搜索树,那它很重要的一个用途就是搜索,搜索的方式为:

  • 与根节点比较,如果相等则根节点就是要搜索的位置

  • 比根节点小,则递归的与左孩子比较

  • 比根节点大,则递归的与有孩子比较

  • 如果最后没找到,则返回最后一个与之比较的节点,意味着可以在这个节点位置插入刚才搜索的值

算法用伪代码表示为:


def search(T,p,k):
"""二叉树搜索的伪代码,k是要搜索的值"""
if k == p.key():
return p
elif k < p.key() and T.left(p) is not None:
return search(T,T.left(p))
elif k > p.key() and T.right(p) is not None:
return search(T,T.right(p))
return p

搜索的时间与高度有关,是O(h),也就是最坏的情况下为O(n),最好的情况下是O(log(n))

插入

插入算法较简单,它依赖于搜索算法,将搜索的返回的位置的值与key进行比较,

  • 如果相等,则就在此位置修改

  • 如果小于返回位置的值,则插入到返回位置的左孩子

  • 如果小于返回位置的值,则插入到返回位置的右孩子

删除

删除操作较为复杂,因为删除的位置可以是任意的位置,设删除的位置为p

  • 如果删除的位置没有孩子,则直接删了就行

  • 如果删除的位置有一个孩子,则删除之后把它的孩子接到它原来的位置上

  • 如果删除的位置有两个孩子,则:

1.先找到位置p的前驱r,前驱在左子树中

2.把p删除,将r代替p

3.把r原来的位置删除

使用前驱的原因是它必然比p的右子树的所有节点小,也必然比除了r的p的左子树的所有节点大

python实现

我们利用二叉树来实现有序映射


class OrderedMap(BinaryTree,MutableMapping):
"""使用二叉搜索树实现的有序映射""" class _item(): def __init__(self, key, value):
self.key = key
self.value = value def __eq__(self, other):
return self.key == other.key def __ne__(self, other):
return self.key != other.key def __lt__(self, other):
return self.key < other.key class Position(BinaryTree.Position): def key(self):
return self.element().key def value(self):
return self.element().value

BinaryTree是在之前文章中定义的二叉树类,具体参考用Python实现数据结构之树

首先定义了两个内嵌类,一个表示键值项,一个用于封装节点

然后定义些非公开方法用于其他方法使用:


def _subtree_search(self, p, k):
"""搜索算法"""
if k == p.key():
return p
elif k < p.key():
if self.left(p) is not None:
return self._subtree_search(self.left(p), k)
else:
if self.right(p) is not None:
return self._subtree_search(self.right(p), k)
return p def _subtree_first_position(self, p):
"""返回树的最左节点"""
walk = p
while self.left(walk) is not None:
walk = self.left(walk)
return walk def _subtree_last_position(self, p):
"""返回树的最右节点"""
walk = p
while self.right(walk) is not None:
walk = self.right(walk)
return walk

下面是一些公开的访问方法:


def first(self):
return self._subtree_first_position(
self.root()) if len(self) > 0 else None def last(self):
return self._subtree_last_position(
self.root()) if len(self) > 0 else None def before(self, p):
"""前驱位置"""
if self.left(p):
return self._subtree_last_position(self.left(p))
else:
walk = p
above = self.parent(walk)
while above is not None and walk == self.left(above):
walk = above
above = self.parent(walk)
return above def after(self, p):
"""后继位置"""
if self.right(p):
return self._subtree_first_position(self.right(p))
else:
walk = p
above = self.parent(walk)
while above is not None and walk == self.right(above):
walk = above
above = self.parent(walk)
return above def find_position(self,k):
if self.is_empty():
return None
else:
p = self._subtree_search(self.root(),k)
return p

接下来是映射的核心方法:


def __getitem__(self, k):
if self.is_empty():
raise KeyError('Key Error'+repr(k))
else:
p = self._subtree_search(self.root(),k)
if k!=p.key():
raise KeyError('Key Error' + repr(k))
return p.value() def __setitem__(self, k,v):
if self.is_empty():
leaf = self.add_root(self._Item(k,v))
else:
p = self._subtree_search(self.root(),k)
if p.key() == k:
p.element().value = v
return
else:
item = self._Item(k,v)
if p.key() < k:
leaf = self.add_right(p,item)
else:
leaf = self.add_left(p, item) def __iter__(self):
p = self.first()
while p is not None:
yield p.key()
p = self.after(p) def mapdelete(self,p):
if self.left(p) and self.right(p): #两个孩子都有的时候
replacement = self._subtree_last_position(self.left(p)) #用左子树最右位置代替
self.replace(p,replacement.element())
p = replacement
self.delete(p) def __delitem__(self, k):
if not self.is_empty():
p = self._subtree_search(self.root(),k)
if k == p.key():
self.mapdelete(p)
return
raise KeyError('Key Error' + repr(k))

最后是一些有序映射特有的方法:


def find_min(self):
"""找最小值,返回键值元组"""
if self.is_empty():
return None
else:
p = self.first()
return(p.key(), p.value()) def find_ge(self, k):
"""找第一个大于等于k的键值元组"""
if self.is_empty():
return None
else:
p = self.find_position(k)
if p.key() < k:
p = self.after(p)
return (p.key(), p.value()) if p is not None else None def find_range(self, start, stop): if not self.is_empty():
if start is None:
p = self.first()
else:
p = self.find_position(start)
if p.key() < start:
p = self.after(p)
while p is not None and (stop is None or p.key() < stop):
yield (p.key(), p.value())
p = self.after(p)

用Python实现数据结构之二叉搜索树的更多相关文章

  1. 【算法与数据结构】二叉搜索树的Java实现

    为了更加深入了解二叉搜索树,博主自己用Java写了个二叉搜索树,有兴趣的同学可以一起探讨探讨. 首先,二叉搜索树是啥?它有什么用呢? 二叉搜索树, 也称二叉排序树,它的每个节点的数据结构为1个父节点指 ...

  2. 数据结构之二叉搜索树、AVL自平衡树

    前言 最近在帮公司校招~~ 所以来整理一些数据结构方面的知识,这些知识呢,光看一遍理解还是很浅的,看过跟动手做过一遍的同学还是很容易分辨的哟~ 一直觉得数据结构跟算法,就好比金庸小说里的<九阳神 ...

  3. hdu 3791:二叉搜索树(数据结构,二叉搜索树 BST)

    二叉搜索树 Time Limit : 2000/1000ms (Java/Other)   Memory Limit : 32768/32768K (Java/Other) Total Submiss ...

  4. 数据结构之二叉搜索树(BST)--JavaScript实现

    原理: 叉排序树的查找过程和次优二叉树类似,通常采取二叉链表作为二叉排序树的存储结构.中序遍历二叉排序树可得到一个关键字的有序序列,一个无序序列可以通过构造一棵二叉排序树变成一个有序序列,构造树的过程 ...

  5. 自己动手实现java数据结构(六)二叉搜索树

    1.二叉搜索树介绍 前面我们已经介绍过了向量和链表.有序向量可以以二分查找的方式高效的查找特定元素,而缺点是插入删除的效率较低(需要整体移动内部元素):链表的优点在于插入,删除元素时效率较高,但由于不 ...

  6. 数据结构-二叉搜索树的js实现

    一.树的相关概念 1.基本概念 子树 一个子树由一个节点和它的后代构成. 节点的度 节点所拥有的子树的个数. 树的度 树中各节点度的最大值 节点的深度 节点的深度等于祖先节点的数量 树的高度 树的高度 ...

  7. 二叉搜索树 - C++ 实现

    二叉搜索树 - C++ 实现 概述 Overview 二叉查找树(英语:Binary Search Tree, 后文中简称 BST), 也称为二叉搜索树.有序二叉树(ordered binary tr ...

  8. 数据结构-二叉搜索树和二叉树排序算法(python实现)

    今天我们要介绍的是一种特殊的二叉树--二叉搜索树,同时我们也会讲到一种排序算法--二叉树排序算法.这两者之间有什么联系呢,我们一起来看一下吧. 开始之前呢,我们先来介绍一下如何创建一颗二叉搜索树. 假 ...

  9. 【数据结构与算法Python版学习笔记】树——平衡二叉搜索树(AVL树)

    定义 能够在key插入时一直保持平衡的二叉查找树: AVL树 利用AVL树实现ADT Map, 基本上与BST的实现相同,不同之处仅在于二叉树的生成与维护过程 平衡因子 AVL树的实现中, 需要对每个 ...

随机推荐

  1. 课程四(Convolutional Neural Networks),第二 周(Deep convolutional models: case studies) —— 0.Learning Goals

    Learning Goals Understand multiple foundational papers of convolutional neural networks Analyze the ...

  2. 如何从GitHub仓库clone项目

    自己也已经多次接触了git了,但是因为工作用svn,自己平时也很少用git,所以每次都是用的时候可能还可以,等过一段时间再来用的时候,就又忘得差不多了,所以索性自己写个博客,自己记得自己也好懂,而且熟 ...

  3. Django -- 部署Django 静态文件不能获取

    # 在部署上下之后无法正常显示后台admin的静态文件 # 因为文件都在django内部,而在nginx中将配置都设置到一个位置: # 措施: 1.在settings.py文件中添加配置; STATI ...

  4. 【适合公司业务】全网最详细的IDEA里如何正确新建【普通或者Maven】的Java web项目并发布到Tomcat上运行成功【博主强烈推荐】(类似eclipse里同一个workspace下【多个子项目】并存)(图文详解)

    不多说,直接上干货! 首先,大家要明确,IDEA.Eclipse和MyEclipse等编辑器之间的新建和运行手法是不一样的. 如果是在Myeclipse里,则是File -> new -> ...

  5. 进程间通信IPC-命名管道FIFO

    FIFO又被称为命名管道,未命名的管道只能在两个相关的进程之间使用,而这两个相关的进程还要有一个共同创建了它们的祖先进程,但是FIFO,不相关的进程之间也能交换数据. FIFO是一种文件类型.通过st ...

  6. js-ES6学习笔记-const命令

    1.const声明一个只读的常量.一旦声明,常量的值就不能改变. 2.const声明的变量不得改变值,这意味着,const一旦声明变量,就必须立即初始化,不能留到以后赋值. 3.const的作用域与l ...

  7. PHP语言的优缺点

    PHP是一种跨平台的服务器端的嵌入式脚本语言. 优点: 实用性强 它大量地借用C.Java 平台广 支持数据种类多 有成熟框架 ,面向对象体系 PHP是完全免费 开源 缺点: 语法不严谨, 弱类型语言 ...

  8. cannot import name 'Flask' from 'flask'

    今天发现了智障的真我. 刚入门flask,建了一个文件命名叫flask.py 在virtualenv的容器里运行该py文件,报错cannot import name 'Flask' from 'fla ...

  9. 过三关 Java冒泡排序选择排序插入排序小练习

    材料:猴子排序,按照身高来从小到大来排序. 第一关: 老猴子带领小猴子队伍按大小逐一比较,交换,开始高矮排列队伍.(冒泡排序) 第二关: 太慢了,给第一关增加难度,进行选择排序 第三关: 最后,尝试选 ...

  10. vue按需引入element或mint

    vue按需引入element或mint需要添加 babel-preset-es2015 和babel-plugin-component