课程四(Convolutional Neural Networks),第二 周(Deep convolutional models: case studies) —— 1.Practice questions



【解释】
应该是same padding 而不是 valid padding 。

【解释】
卷积操作用的应该是adding additional layers to the network ,而是应该添加跳跃连接(Skip connection)。





【解释】
这一题感觉四个选项都是对的,但是提交答案的时候,显示答案有错误。欢迎留言讨论。

----------------------------------------------------------
参考链接:
1、https://www.coursera.org
课程四(Convolutional Neural Networks),第二 周(Deep convolutional models: case studies) —— 1.Practice questions的更多相关文章
- Convolutional Neural Networks: Step by Step
Andrew Ng deeplearning courese-4:Convolutional Neural Network Convolutional Neural Networks: Step by ...
- Convolutional Neural Networks: Application
Andrew Ng deeplearning courese-4:Convolutional Neural Network Convolutional Neural Networks: Step by ...
- 课程四(Convolutional Neural Networks),第二 周(Deep convolutional models: case studies) —— 0.Learning Goals
Learning Goals Understand multiple foundational papers of convolutional neural networks Analyze the ...
- 课程四(Convolutional Neural Networks),第四 周(Special applications: Face recognition & Neural style transfer) —— 2.Programming assignments:Art generation with Neural Style Transfer
Deep Learning & Art: Neural Style Transfer Welcome to the second assignment of this week. In thi ...
- 课程四(Convolutional Neural Networks),第一周(Foundations of Convolutional Neural Networks) —— 3.Programming assignments:Convolutional Model: application
Convolutional Neural Networks: Application Welcome to Course 4's second assignment! In this notebook ...
- 课程四(Convolutional Neural Networks),第一周(Foundations of Convolutional Neural Networks) —— 2.Programming assignments:Convolutional Model: step by step
Convolutional Neural Networks: Step by Step Welcome to Course 4's first assignment! In this assignme ...
- [C4W2] Convolutional Neural Networks - Deep convolutional models: case studies
第二周 深度卷积网络:实例探究(Deep convolutional models: case studies) 为什么要进行实例探究?(Why look at case studies?) 这周我们 ...
- ImageNet Classification with Deep Convolutional Neural Networks(译文)转载
ImageNet Classification with Deep Convolutional Neural Networks Alex Krizhevsky, Ilya Sutskever, Geo ...
- AlexNet论文翻译-ImageNet Classification with Deep Convolutional Neural Networks
ImageNet Classification with Deep Convolutional Neural Networks 深度卷积神经网络的ImageNet分类 Alex Krizhevsky ...
- 中文版 ImageNet Classification with Deep Convolutional Neural Networks
ImageNet Classification with Deep Convolutional Neural Networks 摘要 我们训练了一个大型深度卷积神经网络来将ImageNet LSVRC ...
随机推荐
- java 线程Thread 技术--volatile关键字
java 语言中允许线程访问共享变量,为了保证共享变量能被准确和一致的更新,Java 语言提供了volatile 关键字,也就是我们所说的内存一致性: 问题抛出:(尝试去运行下面代码,以及将volat ...
- canvas(四) Gradient- demo
/** * Created by xianrongbin on 2017/3/9. */ /* strokeStyle 或 fillStyle 属性的值*/ /** * Demo1 创建线性渐变 */ ...
- Eigen使用矩阵作为函数参数
1 使用矩阵作为函数参数介绍 文章来源Writing Functions Taking %Eigen Types as Parameters Eigen为了在函数中传递不同的类型使用了表达式模板技术. ...
- Spring 系列目录
Spring(https://spring.io/) 系列目录 第一篇:Spring 系列 第一章 Spring Core (1) Convert 1.1.1 Spring ConversionSer ...
- php上传多张图片
第一种:加后缀 代码实现(就是普通的上传图片,只是在外面加个foreach循环) $allow_file_types = '|GIF|JPG|PNG|BMP|SWF|DOC|XLS|PPT|MID|W ...
- Python3个人学习笔记--每天一点一滴成长!
简单的while循环:输入一个数字,while获取该数字,并输出该数字. 例子:猜幸运数字是多少? lucky_num = int(input("number:")) a = 0 ...
- http协议介绍及get与post请求、响应状态码
HTTP: 通信双方如果想要通信就必须遵循一定的规则,我们把这个规则称之为HTTP协议! 报文: HTTP协议通信的内容我们称之为:报文 报文格式: 报文首部 空行 报文主体 1.请求报文 ...
- 1.3eigen中数组类和系数的运算
1.3数组类和系数的运算 与矩阵类只适用与线性代数运算相反,数组类提供通用的数组类,能不利用线性代数的知识来对系数进行操作,比如对每个系数加上一个常数,或者乘上两个数组的系数. 1.数组类型 跟矩阵类 ...
- OpenCV图像分割1
1.基于阈值 1.1原理 灰度阈值化,假设输入图像为f,输出图像为g,则阈值化公式如下: g(i,j)=1 当f(i,j)>=T g(i,j)=0 当f(i,j)<T 1.2适用范围 当 ...
- 福大软工 · 第八次作业(课堂实战)- 项目UML设计(团队)
Team information 队名: 彳艮彳亍团队 各成员短学号.名: 学号: 姓名: 本次博客链接: 041602209 黄毓明(临时队长) https://www.cnblogs.com/m ...