[luogu3455][POI2007]ZAP-Queries【莫比乌斯反演】
题目描述
FGD正在破解一段密码,他需要回答很多类似的问题:对于给定的整数a,b和d,有多少正整数对x,y,满足x<=a,y<=b,并且gcd(x,y)=d。作为FGD的同学,FGD希望得到你的帮助。
分析
很明显的一道莫比乌斯反演,但是还没有写过学习笔记,之后一定补起来(flag)。
\[f(k)=\sum^a_{i=1}\sum^b_{j=1}[gcd(i,j)=k]\]
\[F(k) = \sum_{n|k}f(k)= \lfloor \frac{a}{n} \rfloor \lfloor \frac{b}{n} \rfloor \]
由反演退出以下的式子:
\[f(n) = \sum_{n|k} \mu (\lfloor \frac{k}{n}\rfloor) F(k)\]
那么答案就是\(f(d)\),
我们枚举整除分块$\lfloor \frac k d \rfloor $
递推式就是:
\[ans=\sum^{min(a,b)}_{t=1} \mu(t) \lfloor \frac{a}{td} \rfloor \lfloor \frac{b}{td} \rfloor \]
多组数据我们就用整除分块,差不多复杂度是\(O(t\sqrt{n})\)
ps.记得要开long long。
ac代码
#include <bits/stdc++.h>
#define ll long long
#define ms(a, b) memset(a, b, sizeof(a))
#define inf 0x3f3f3f3f
using namespace std;
template <typename T>
inline void read(T &x) {
x = 0; T fl = 1;
char ch = 0;
while (ch < '0' || ch > '9') {
if (ch == '-') fl = -1;
ch = getchar();
}
while (ch >= '0' && ch <= '9') {
x = (x << 1) + (x << 3) + (ch ^ 48);
ch = getchar();
}
x *= fl;
}
#define N 500005
ll sum[N], mui[N], prime[N];
int cnt;
bool vis[N];
void get_mui(ll MAXN) {
mui[1] = 1;
for (ll i = 2; i <= MAXN; i ++) {
if (!vis[i]) {
mui[i] = -1;
prime[++ cnt] = i;
}
for (ll j = 1; j <= cnt && prime[j] * i <= MAXN; j ++) {
vis[prime[j] * i] = 1;
if (i % prime[j] == 0) break;
else mui[prime[j] * i] = -mui[i];
}
}
for (ll i = 1; i <= MAXN; i ++) sum[i] = sum[i - 1] + mui[i];
}
int main() {
int cas;
read(cas);
get_mui(500000);
while (cas --) {
ll a, b, d;
read(a); read(b); read(d);
ll ans = 0;
for (ll l = 1, r; l <= min(a, b); l = r + 1) {
r = min(a / (a / l), b / (b / l));
ans += (a / (l * d) * (b / (l * d))) * (sum[r] - sum[l - 1]);
}
printf("%lld\n", ans);
}
return 0;
}
[luogu3455][POI2007]ZAP-Queries【莫比乌斯反演】的更多相关文章
- 【BZOJ】1101 [POI2007]Zap(莫比乌斯反演)
题目 传送门:QWQ 分析 莫比乌斯反演. 还不是很熟练qwq 代码 //bzoj1101 //给出a,b,d,询问有多少对二元组(x,y)满足gcd(x,y)=d.x<=a,y<=b # ...
- BZOJ1101 POI2007 Zap 【莫比乌斯反演】
BZOJ1101 POI2007 Zap Description FGD正在破解一段密码,他需要回答很多类似的问题:对于给定的整数a,b和d,有多少正整数对x,y,满足x<=a,y<=b, ...
- 【BZOJ1101】[POI2007] Zap(莫比乌斯反演)
点此看题面 大致题意: 求\(\sum_{x=1}^N\sum_{y=1}^M[gcd(x,y)==d]\). 一道类似的题目 推荐先去做一下这道题:[洛谷2257]YY的GCD,来初步了解一下莫比乌 ...
- BZOJ 1101 [POI2007]Zap(莫比乌斯反演)
[题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=1101 [题目大意] 求[1,n][1,m]内gcd=k的情况 [题解] 考虑求[1,n ...
- ☆ [POI2007] ZAP-Queries 「莫比乌斯反演」
题目类型:莫比乌斯反演 传送门:>Here< 题意:求有多少对正整数对\((a,b)\),满足\(0<a<A\),\(0<b<B\),\(gcd(a,b)=d\) ...
- 洛谷P3455 [POI2007]ZAP-Queries (莫比乌斯反演)
题意:求$\sum_{i=1}^{a}\sum_{j=1}^{b}[gcd(i,j)==d]$(1<=a,b,d<=50000). 很套路的莫比乌斯反演. $\sum_{i=1}^{n}\ ...
- 【BZOJ】1101: [POI2007]Zap(莫比乌斯+分块)
http://www.lydsy.com/JudgeOnline/problem.php?id=1101 无限膜拜数论和分块orz 首先莫比乌斯函数的一些性质可以看<初等数论>或<具 ...
- [POI2007]ZAP-Queries (莫比乌斯反演+整除分块)
[POI2007]ZAP-Queries \(solution:\) 唉,数论实在有点烂了,昨天还会的,今天就不会了,周末刚证明的,今天全忘了,还不如早点写好题解. 这题首先我们可以列出来答案就是: ...
- 洛谷P3455 [POI2007]ZAP-Queries(莫比乌斯反演)
传送门 设$$f(k)=\sum_{i=1}^{a}\sum_{j=1}^{b}[gcd(i,j)=k]$$ $$g(n)=\sum_{n|k}f(k)=\lfloor\frac{a}{n}\rflo ...
随机推荐
- R绘图 第十二篇:散点图(高级)
散点图用于描述两个连续性变量间的关系,三个变量之间的关系可以通过3D图形或气泡来展示,多个变量之间的两两关系可以通过散点图矩阵来展示. 一,添加了最佳拟合曲线的散点图 使用基础函数plot(x,y)来 ...
- Docker容器学习梳理 - Dockerfile构建镜像
在Docker的运用中,从下载镜像,启动容器,在容器中输入命令来运行程序,这些命令都是手工一条条往里输入的,无法重复利用,而且效率很低.所以就需要一 种文件或脚本,我们把想执行的操作以命令的方式写入其 ...
- SQLServer 中发布与订阅
在对数据库做迁移的时候,会有很多方法,用存储过程,job,也可以用开源工具kettle,那么今天这些天变接触到了一种新的方法,就是SqlServer中自带的发布与订阅. 首先说明一下数据复制的流程.如 ...
- linux内核期中总结
20135132陈雨鑫 + 原创作品转载请注明出处 + <Linux内核分析>MOOC课程http://mooc.study.163.com/course/USTC-1000029000 ...
- 《Linux内核分析》第七周学习笔记
<Linux内核分析>第七周学习笔记 可执行程序的装载 郭垚 原创作品转载请注明出处 <Linux内核分析>MOOC课程http://mooc.study.163.com/co ...
- sho
手工编程:hello world 全部用命令行工具和Notepad编辑器,用手工创建并编译一个C的命令行程序:hello world. public class Hello{ publ ...
- 第三个Sprint冲刺第3天
成员:罗凯旋.罗林杰.吴伟锋.黎文衷 组内各成员加紧完成自己的工作.
- 机器学习算法(KNN)
KNN简介 KNN(k-NearestNeighbor)算法的思想总结一下:就是在数据和标签已知的情况下,输入测试数据,将测试数据的特征与训练集中对应的特征进行相互比较,找到训练集中与之最为相似的前K ...
- 使用Spring提供的缓存抽象机制整合EHCache为项目提供二级缓存
Spring自身并没有实现缓存解决方案,但是对缓存管理功能提供了声明式的支持,能够与多种流行的缓存实现进行集成. Spring Cache是作用在方法上的(不能理解为只注解在方法上),其核心思想是 ...
- Maven的课堂笔记2
5 maven的核心概念 5.1 项目对象模型 说明: maven根据pom.xml文件,把它转化成项目对象模型(POM),这个时候要解析依赖关系,然后去相对应的maven库中查找到依赖的jar包. ...