题目描述

FGD正在破解一段密码,他需要回答很多类似的问题:对于给定的整数a,b和d,有多少正整数对x,y,满足x<=a,y<=b,并且gcd(x,y)=d。作为FGD的同学,FGD希望得到你的帮助。

分析

很明显的一道莫比乌斯反演,但是还没有写过学习笔记,之后一定补起来(flag)。

\[f(k)=\sum^a_{i=1}\sum^b_{j=1}[gcd(i,j)=k]\]
\[F(k) = \sum_{n|k}f(k)= \lfloor \frac{a}{n} \rfloor \lfloor \frac{b}{n} \rfloor \]
由反演退出以下的式子:
\[f(n) = \sum_{n|k} \mu (\lfloor \frac{k}{n}\rfloor) F(k)\]
那么答案就是\(f(d)\),
我们枚举整除分块$\lfloor \frac k d \rfloor $
递推式就是:
\[ans=\sum^{min(a,b)}_{t=1} \mu(t) \lfloor \frac{a}{td} \rfloor \lfloor \frac{b}{td} \rfloor \]
多组数据我们就用整除分块,差不多复杂度是\(O(t\sqrt{n})\)
ps.记得要开long long。

ac代码

#include <bits/stdc++.h>
#define ll long long
#define ms(a, b) memset(a, b, sizeof(a))
#define inf 0x3f3f3f3f
using namespace std;
template <typename T>
inline void read(T &x) {
    x = 0; T fl = 1;
    char ch = 0;
    while (ch < '0' || ch > '9') {
        if (ch == '-') fl = -1;
        ch = getchar();
    }
    while (ch >= '0' && ch <= '9') {
        x = (x << 1) + (x << 3) + (ch ^ 48);
        ch = getchar();
    }
    x *= fl;
}
#define N 500005
ll sum[N], mui[N], prime[N];
int cnt;
bool vis[N];
void get_mui(ll MAXN) {
    mui[1] = 1;
    for (ll i = 2; i <= MAXN; i ++) {
        if (!vis[i]) {
            mui[i] = -1;
            prime[++ cnt] = i;
        }
        for (ll j = 1; j <= cnt && prime[j] * i <= MAXN; j ++) {
            vis[prime[j] * i] = 1;
            if (i % prime[j] == 0) break;
            else mui[prime[j] * i] = -mui[i];
        }
    }
    for (ll i = 1; i <= MAXN; i ++) sum[i] = sum[i - 1] + mui[i];
}
int main() {
    int cas;
    read(cas);
    get_mui(500000);
    while (cas --) {
        ll a, b, d;
        read(a); read(b); read(d);
        ll ans = 0;
        for (ll l = 1, r; l <= min(a, b); l = r + 1) {
            r = min(a / (a / l), b / (b / l));
            ans += (a / (l * d) * (b / (l * d))) * (sum[r] - sum[l - 1]);
        }
        printf("%lld\n", ans);
    }
    return 0;
}

[luogu3455][POI2007]ZAP-Queries【莫比乌斯反演】的更多相关文章

  1. 【BZOJ】1101 [POI2007]Zap(莫比乌斯反演)

    题目 传送门:QWQ 分析 莫比乌斯反演. 还不是很熟练qwq 代码 //bzoj1101 //给出a,b,d,询问有多少对二元组(x,y)满足gcd(x,y)=d.x<=a,y<=b # ...

  2. BZOJ1101 POI2007 Zap 【莫比乌斯反演】

    BZOJ1101 POI2007 Zap Description FGD正在破解一段密码,他需要回答很多类似的问题:对于给定的整数a,b和d,有多少正整数对x,y,满足x<=a,y<=b, ...

  3. 【BZOJ1101】[POI2007] Zap(莫比乌斯反演)

    点此看题面 大致题意: 求\(\sum_{x=1}^N\sum_{y=1}^M[gcd(x,y)==d]\). 一道类似的题目 推荐先去做一下这道题:[洛谷2257]YY的GCD,来初步了解一下莫比乌 ...

  4. BZOJ 1101 [POI2007]Zap(莫比乌斯反演)

    [题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=1101 [题目大意] 求[1,n][1,m]内gcd=k的情况 [题解] 考虑求[1,n ...

  5. ☆ [POI2007] ZAP-Queries 「莫比乌斯反演」

    题目类型:莫比乌斯反演 传送门:>Here< 题意:求有多少对正整数对\((a,b)\),满足\(0<a<A\),\(0<b<B\),\(gcd(a,b)=d\) ...

  6. 洛谷P3455 [POI2007]ZAP-Queries (莫比乌斯反演)

    题意:求$\sum_{i=1}^{a}\sum_{j=1}^{b}[gcd(i,j)==d]$(1<=a,b,d<=50000). 很套路的莫比乌斯反演. $\sum_{i=1}^{n}\ ...

  7. 【BZOJ】1101: [POI2007]Zap(莫比乌斯+分块)

    http://www.lydsy.com/JudgeOnline/problem.php?id=1101 无限膜拜数论和分块orz 首先莫比乌斯函数的一些性质可以看<初等数论>或<具 ...

  8. [POI2007]ZAP-Queries (莫比乌斯反演+整除分块)

    [POI2007]ZAP-Queries \(solution:\) 唉,数论实在有点烂了,昨天还会的,今天就不会了,周末刚证明的,今天全忘了,还不如早点写好题解. 这题首先我们可以列出来答案就是: ...

  9. 洛谷P3455 [POI2007]ZAP-Queries(莫比乌斯反演)

    传送门 设$$f(k)=\sum_{i=1}^{a}\sum_{j=1}^{b}[gcd(i,j)=k]$$ $$g(n)=\sum_{n|k}f(k)=\lfloor\frac{a}{n}\rflo ...

随机推荐

  1. 利用Costura.Fody制作绿色单文件程序(C#程序(含多个Dll)合并成一个Exe)

    原文:利用Costura.Fody制作绿色单文件程序(C#程序(含多个Dll)合并成一个Exe) 开发程序的时候经常会引用一些第三方的DLL,然后编译生成的exe文件就不能脱离这些DLL独立运行了.这 ...

  2. Ubuntu16.04下安装破解secureCRT和secureFX的操作记录

    本地电脑之前安装的是win10,疲于win10频繁的更新和各种兼容问题,果断放弃win10系统,安装了Ubuntu 16.04系统,现在微信.QQ.钉钉.WPS等都已支持linux版本,所以在Ubun ...

  3. Mysql优化系列(1)--Innodb重要参数优化

    1.简单介绍InnoDB给MySQL提供了具有提交,回滚和崩溃恢复能力的事务安全(ACID兼容)存储引擎.InnoDB锁定在行级并且也在SELECT语句提供一个Oracle风格一致的非锁定读.这些特色 ...

  4. hdu 1263 水果 结构的排序+sort自定义排序

    水果 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total Submissi ...

  5. [Beta]M2事后分析

    计划 你原计划的工作是否最后都做完了? 如果有没做完的,为什么? 答:没有,全部的功能没有实现.其中,界面还差两个,逻辑还差闹钟逻辑和群组逻辑,可以说这些东西是我们的核心功能之一,缺失了他们对我们整个 ...

  6. 《linux内核设计与实现》第十八章

    第十八章 调试 调试工作艰难是内核级开发区别于用户级开发的一个显著特点. 一.准备开始 1.内和调试需要什么 一个bug(大部分bug通常都不是行为可靠而且定义明确的) 一个藏匿bug的内核版本(知道 ...

  7. 读<架构漫谈>系列有感

    读了这一系列博文,我对架构也有了大致的了解.在简单的阅读之后,我解决了几个问题. 第一个问题,什么是架构? 要学习架构,首先要知道架构.那么,什么是架构呢?引用<架构漫谈(一)>里的话就是 ...

  8. 软件工程项目之摄影App(总结)

    软件工程项目之摄影App 心得体会: dyh:这次的项目很难做,本来想在里面添加动画效果的,但是找了很多例子都没看明白,能力还是不足够把,还有一个就是数据库在安卓课程里面刚刚涉及到,所以也还没能做出数 ...

  9. 后端返回值以json的格式返回,前端以json格式接收

    以随便一个类为例子:这个例子是查询企业主营类别前5事项 一.以json数组的格式返回到前端中 (1)后端将结果绑定到param中,然后将结果以为json数组的格式返回到前端 /** * 查询企业主营类 ...

  10. 数学战神app(小学生四则运算app)开发需求及进度

    项目名字:“数学战神” 开发环境:Android eclipse 团队名称:战神联盟 团队成员:陈思明,许家豪,王宏财,吴旭涛 在之前的四则运算APP中添加更多的实用功能,并在各种平台推广宣传. 预加 ...