[luogu3455][POI2007]ZAP-Queries【莫比乌斯反演】
题目描述
FGD正在破解一段密码,他需要回答很多类似的问题:对于给定的整数a,b和d,有多少正整数对x,y,满足x<=a,y<=b,并且gcd(x,y)=d。作为FGD的同学,FGD希望得到你的帮助。
分析
很明显的一道莫比乌斯反演,但是还没有写过学习笔记,之后一定补起来(flag)。
\[f(k)=\sum^a_{i=1}\sum^b_{j=1}[gcd(i,j)=k]\]
\[F(k) = \sum_{n|k}f(k)= \lfloor \frac{a}{n} \rfloor \lfloor \frac{b}{n} \rfloor \]
由反演退出以下的式子:
\[f(n) = \sum_{n|k} \mu (\lfloor \frac{k}{n}\rfloor) F(k)\]
那么答案就是\(f(d)\),
我们枚举整除分块$\lfloor \frac k d \rfloor $
递推式就是:
\[ans=\sum^{min(a,b)}_{t=1} \mu(t) \lfloor \frac{a}{td} \rfloor \lfloor \frac{b}{td} \rfloor \]
多组数据我们就用整除分块,差不多复杂度是\(O(t\sqrt{n})\)
ps.记得要开long long。
ac代码
#include <bits/stdc++.h>
#define ll long long
#define ms(a, b) memset(a, b, sizeof(a))
#define inf 0x3f3f3f3f
using namespace std;
template <typename T>
inline void read(T &x) {
x = 0; T fl = 1;
char ch = 0;
while (ch < '0' || ch > '9') {
if (ch == '-') fl = -1;
ch = getchar();
}
while (ch >= '0' && ch <= '9') {
x = (x << 1) + (x << 3) + (ch ^ 48);
ch = getchar();
}
x *= fl;
}
#define N 500005
ll sum[N], mui[N], prime[N];
int cnt;
bool vis[N];
void get_mui(ll MAXN) {
mui[1] = 1;
for (ll i = 2; i <= MAXN; i ++) {
if (!vis[i]) {
mui[i] = -1;
prime[++ cnt] = i;
}
for (ll j = 1; j <= cnt && prime[j] * i <= MAXN; j ++) {
vis[prime[j] * i] = 1;
if (i % prime[j] == 0) break;
else mui[prime[j] * i] = -mui[i];
}
}
for (ll i = 1; i <= MAXN; i ++) sum[i] = sum[i - 1] + mui[i];
}
int main() {
int cas;
read(cas);
get_mui(500000);
while (cas --) {
ll a, b, d;
read(a); read(b); read(d);
ll ans = 0;
for (ll l = 1, r; l <= min(a, b); l = r + 1) {
r = min(a / (a / l), b / (b / l));
ans += (a / (l * d) * (b / (l * d))) * (sum[r] - sum[l - 1]);
}
printf("%lld\n", ans);
}
return 0;
}
[luogu3455][POI2007]ZAP-Queries【莫比乌斯反演】的更多相关文章
- 【BZOJ】1101 [POI2007]Zap(莫比乌斯反演)
题目 传送门:QWQ 分析 莫比乌斯反演. 还不是很熟练qwq 代码 //bzoj1101 //给出a,b,d,询问有多少对二元组(x,y)满足gcd(x,y)=d.x<=a,y<=b # ...
- BZOJ1101 POI2007 Zap 【莫比乌斯反演】
BZOJ1101 POI2007 Zap Description FGD正在破解一段密码,他需要回答很多类似的问题:对于给定的整数a,b和d,有多少正整数对x,y,满足x<=a,y<=b, ...
- 【BZOJ1101】[POI2007] Zap(莫比乌斯反演)
点此看题面 大致题意: 求\(\sum_{x=1}^N\sum_{y=1}^M[gcd(x,y)==d]\). 一道类似的题目 推荐先去做一下这道题:[洛谷2257]YY的GCD,来初步了解一下莫比乌 ...
- BZOJ 1101 [POI2007]Zap(莫比乌斯反演)
[题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=1101 [题目大意] 求[1,n][1,m]内gcd=k的情况 [题解] 考虑求[1,n ...
- ☆ [POI2007] ZAP-Queries 「莫比乌斯反演」
题目类型:莫比乌斯反演 传送门:>Here< 题意:求有多少对正整数对\((a,b)\),满足\(0<a<A\),\(0<b<B\),\(gcd(a,b)=d\) ...
- 洛谷P3455 [POI2007]ZAP-Queries (莫比乌斯反演)
题意:求$\sum_{i=1}^{a}\sum_{j=1}^{b}[gcd(i,j)==d]$(1<=a,b,d<=50000). 很套路的莫比乌斯反演. $\sum_{i=1}^{n}\ ...
- 【BZOJ】1101: [POI2007]Zap(莫比乌斯+分块)
http://www.lydsy.com/JudgeOnline/problem.php?id=1101 无限膜拜数论和分块orz 首先莫比乌斯函数的一些性质可以看<初等数论>或<具 ...
- [POI2007]ZAP-Queries (莫比乌斯反演+整除分块)
[POI2007]ZAP-Queries \(solution:\) 唉,数论实在有点烂了,昨天还会的,今天就不会了,周末刚证明的,今天全忘了,还不如早点写好题解. 这题首先我们可以列出来答案就是: ...
- 洛谷P3455 [POI2007]ZAP-Queries(莫比乌斯反演)
传送门 设$$f(k)=\sum_{i=1}^{a}\sum_{j=1}^{b}[gcd(i,j)=k]$$ $$g(n)=\sum_{n|k}f(k)=\lfloor\frac{a}{n}\rflo ...
随机推荐
- b/s程序真的很方便部署吗
公共应用当然是web系统,这个不说,我说的是企业应用. 最近一些年在企业开发中都提倡web应用,仿佛winform可以结束了,但真的这样吗?最近几天的真实经历如下: 我们部门新开发了一套系统要上线,由 ...
- 系统引导修复,grub2下的各种骚作
新买的xps装了一个rhel7.5,各种恶心... 第一次:升级内核之后居然引导不了! 进入bios setup,把bios 引导的文件选择为 grub64.eif,成功进入系统 第二次:升级grub ...
- NodeMCU学习(二) : 如何使用NodeMCU进行开发
NodeMCU的GPIO口 Arduino的引脚号与NodeMCU的GPIO口直接对应,NodeMCU的GPIO函数pinMode, digitalWrite, DigitalRead也是和Ardu ...
- Jmeter-使用Stepping Thread Group插件来设置负载场景
前言: 什么是实际的性能测试???1)思考时间:用户在做不同操作之间有时间停顿,或者延迟,思考时间就是模拟用户的操作过程中的停顿的间.2)步伐,速度:主要包括,大量用户进来的时间和退出时间,控制迭代之 ...
- Android Studio 打包AAR和第三方静态库
需求 现在有一个第三方库libstatic_add.a和对应的头文件static.h,要求封装一个Module,该Module依赖这个静态库,要求打包的Module包含该静态库. 方案 创建Andro ...
- hg命令
hg常用命令 hg命令跟git命令大同小异 hg version 查看hg版本 hg clone url 克隆代码仓库 hg branch newBranch 创建分支 hg update other ...
- ajax 异步请求 代码
<%@ page language="java" contentType="text/html; charset=UTF-8" pageEncoding= ...
- Setting Tomcat Heap Size (JVM Heap) in Eclipse
this article picked from:http://viralpatel.net/blogs/setting-tomcat-heap-size-jvm-heap-eclipse/ Rece ...
- XSS编码与绕过
XSS编码与绕过 0x00 背景 对于了解web安全的朋友来说,都知道XSS这种漏洞,其危害性不用强调了.一般对于该漏洞的防护有两个思路:一是过滤敏感字符,诸如[<,>,script,' ...
- 面象对象设计原则之四:接口隔离原则(The Interface Segregation Principle,ISP)
接口隔离原则定义如下: 接口隔离原则(Interface Segregation Principle, ISP):使用多个专门的接口,而不使用单一的总接口,即客户端不应该依赖那些它不需要的接口. 根 ...