MT【69】斯图姆定理
评:如果说零点存在定理是“只在此山中,云深不知处”的意境。那么斯图姆定理就能处理多项式的零点个数以及定位.
MT【69】斯图姆定理的更多相关文章
- 帕斯瓦尔定理(Parseval's theorem)
∫∞−∞|x(t)|2dt=12π∫∞−∞|X(ω)|2dω=∫∞−∞|X(2πf)|2df∑n=−∞∞|x[n]|2=12π∫π−π|X(eiϕ)|2dϕ∑n=0N−1|x[n]|2=1N∑k=0N ...
- 奈奎斯特采样定理(Nyquist)
采样定理在1928年由美国电信工程师H.奈奎斯特首先提出来的,因此称为奈奎斯特采样定理. 1933年由苏联工程师科捷利尼科夫首次用公式严格地表述这一定理,因此在苏联文献中称为科捷利尼科夫采样定理. 1 ...
- MT【144】托兰定理【图论】
平面上$2n$个点$(n>1,n\in N)$,无三点共线,任意两点连线段,将其中任意$n^2+1$条线段染红色. 求证:三边都为红色的三角形至少有$\left[\dfrac{2}{3}(n+\ ...
- poj 1659 判断是否能构成图Havel-Hakimi定理
//用到了Havel-Hakimi定理,判断是否能够构图 //两种情况不能构图,1:对剩下序列排序后,最大的度数超过了剩下的顶点数 // 2:对最大的度数后面的f个度数减-后,出现了负数 //记录到临 ...
- Havel-Hakimi定理---通过度数列判断是否可图化
0.可图:一个非负整数组成的序列如果是某个无向图的度序列,则该序列是可图的. 1.度序列:Sequence Degree,若把图G所有顶点的度数排成一个序列,责成该序列为图G的一个序列.该序列可以是非 ...
- LDA概率图模型之贝叶斯理解
贝叶斯.概率分布与机器学习 转自:http://www.cnblogs.com/LeftNotEasy/archive/2010/09/27/1837163.html 本文由LeftNotEasy原 ...
- HDU 2454"Degree Sequence of Graph G"(度序列可图性判断)
传送门 参考资料: [1]:图论-度序列可图性判断(Havel-Hakimi定理) •题意 给你 n 个非负整数列,判断这个序列是否为可简单图化的: •知识支持 握手定理:在任何无向图中,所有顶点的度 ...
- 世界城市 XML
下载地址:http://www.qlcoder.com/uploads/dd01140921/147988679320159.xml <Location> <CountryRegio ...
- Java程序员必备英文单词
列表中共有769个单词,这些单词是从JDK.Spring.SpringBoot.Mybatis的源码中解析得到,按照在源码中出现的频次依次排列,页面中的单词是出现频次大于1000的.单词的音标.翻译结 ...
随机推荐
- 使用自定义端口连接SQL Server的方法(转载)
使用过SQL Server的人大多都知道,SQL Server服务器默认监听的端口号是1433,但是我今天遇到的问题是我的机器上有三个数据库实例,这样使用TCP/IP远程连接时就产生了问题.如何在Mi ...
- 【小程序】当遇到bindTap绑定无法跳转到tabbar页面时
如下图: 更换成navigator包裹跳转也不起作用. cart目录在app.json中定义在底部tabBar中 在小程序 导航 文档 最下方表示 所以,以上应改为
- ASP.NET Core使用log4net记录日志
.NET常用的日志组件有NLog.Log4net等,.NET CORE下微软也自带了日志组件,到目前为止还没用过,而我本人常用的是log4net,下面简单讲讲.NET CORE下怎么使用log4net ...
- SA的一个辣鸡trick
基础板子 namespace SA{ int x[400010],y[400010],SA[400010],rk[400010],ht[400010],t[400010]; int st[19][40 ...
- BTrace 初探
BTrace 是一款java诊断工具,在解决现场问题的时候非常有用. 今天使用的时候碰到几个坑,先记录一下. 下载下来以后直接运行报错 root@iZ2ze89756yjbvq7le6obdZ:~/b ...
- 第三次作业 (一)----------------------Visual Studio 2015的安装及单元测试
这是第三周的第一个作业,Visual Studio 2015的安装及单元测试. 我的电脑之前安装过Visual Studio 2015,但是在安装过程中我从来没有留意过各种注意事项,所集正好借此作业的 ...
- QT 子窗口退出全屏
m_pWidget代表子窗口, 子窗口显示全屏: m_pWidget->setWindowFlags(Qt::Dialog); m_pWidget->showFullScreen(); 子 ...
- leetcode: 638.大礼包
题目描述: https://leetcode-cn.com/problems/shopping-offers/ 解题思路: 这类求最大最小的问题首先想到的就是用DP求解. 这题还用到了递归,首先计算单 ...
- Android动画总结
本文总结常用属性方法等,详细学习可使用如下郭霖大神文章: Android属性动画完全解析(上),初识属性动画的基本用法 Android属性动画完全解析(中),ValueAnimator和ObjectA ...
- activiti engine.schema.update DB_SCHEMA_UPDATE_FALSE
engine.properties # engine propertiesengine.schema.update=trueengine.activate.jobexecutor=falseengin ...