一、客户端进行操作

1、根据yarnConf来初始化yarnClient,并启动yarnClient
2、创建客户端Application,并获取Application的ID,进一步判断集群中的资源是否满足executor和ApplicationMaster申请的资源,如果不满足则抛出IllegalArgumentException;
3、设置资源、环境变量:其中包括了设置Application的Staging目录、准备本地资源(jar文件、log4j.properties)、设置Application其中的环境变量、创建Container启动的Context等;
4、设置Application提交的Context,包括设置应用的名字、队列、AM的申请的Container、标记该作业的类型为Spark;
5、申请Memory,并最终通过yarnClient.submitApplication向ResourceManager提交该Application。
当作业提交到YARN上之后,客户端就没事了,甚至在终端关掉那个进程也没事,因为整个作业运行在YARN集群上进行,运行的结果将会保存到HDFS或者日志中。

二、提交到YARN集群,YARN操作

1、运行ApplicationMaster的run方法;
2、设置好相关的环境变量。
3、创建amClient,并启动;
4、在Spark UI启动之前设置Spark UI的AmIpFilter;
5、在startUserClass函数专门启动了一个线程(名称为Driver的线程)来启动用户提交的Application,也就是启动了Driver。在Driver中将会初始化SparkContext;
6、等待SparkContext初始化完成,最多等待spark.yarn.applicationMaster.waitTries次数(默认为10),如果等待了的次数超过了配置的,程序将会退出;否则用SparkContext初始化yarnAllocator;

7、当SparkContext、Driver初始化完成的时候,通过amClient向ResourceManager注册ApplicationMaster
8、分配并启动Executeors。在启动Executeors之前,先要通过yarnAllocator获取到numExecutors个Container,然后在Container中启动Executeors。那么这个Application将失败,将Application Status标明为FAILED,并将关闭SparkContext。其实,启动Executeors是通过ExecutorRunnable实现的,而ExecutorRunnable内部是启动CoarseGrainedExecutorBackend的。

9、最后,Task将在CoarseGrainedExecutorBackend里面运行,然后运行状况会通过Akka通知CoarseGrainedScheduler,直到作业运行完成。

三、Spark on Yarn配置参数

1. spark.yarn.applicationMaster.waitTries  5

用于applicationMaster等待Spark master的次数以及SparkContext初始化尝试的次数 (一般不用设置)

2.spark.yarn.am.waitTime 100s

3.spark.yarn.submit.file.replication 3

应用程序上载到HDFS的复制份数

4.spark.preserve.staging.files    false

设置为true,在job结束后,将stage相关的文件保留而不是删除。 (一般无需保留,设置成false)

5.spark.yarn.scheduler.heartbeat.interal-ms  5000

Spark application master给YARN ResourceManager 发送心跳的时间间隔(ms)

6.spark.yarn.executor.memoryOverhead  1000

此为vm的开销(根据实际情况调整)

7.spark.shuffle.consolidateFiles  true

仅适用于HashShuffleMananger的实现,同样是为了解决生成过多文件的问题,采用的方式是在不同批次运行的Map任务之间重用Shuffle输出文件,也就是说合并的是不同批次的Map任务的输出数据,但是每个Map任务所需要的文件还是取决于Reduce分区的数量,因此,它并不减少同时打开的输出文件的数量,因此对内存使用量的减少并没有帮助。只是HashShuffleManager里的一个折中的解决方案。

8.spark.serializer        org.apache.spark.serializer.KryoSerializer

暂时只支持Java serializer和KryoSerializer序列化方式

9.spark.kryoserializer.buffer.max 128m

允许的最大大小的序列化值。

10.spark.storage.memoryFraction    0.3

用来调整cache所占用的内存大小。默认为0.6。如果频繁发生Full GC,可以考虑降低这个比值,这样RDD Cache可用的内存空间减少(剩下的部分Cache数据就需要通过Disk Store写到磁盘上了),会带来一定的性能损失,但是腾出更多的内存空间用于执行任务,减少Full GC发生的次数,反而可能改善程序运行的整体性能。

11.spark.sql.shuffle.partitions 800

一个partition对应着一个task,如果数据量过大,可以调整次参数来减少每个task所需消耗的内存.

12.spark.sql.autoBroadcastJoinThreshold -1

当处理join查询时广播到每个worker的表的最大字节数,当设置为-1广播功能将失效。

13.spark.speculation   false

如果设置成true,倘若有一个或多个task执行相当缓慢,就会被重启执行。(事实证明,这种做法会造成hdfs中临时文件的丢失,报找不到文件的错)

14.spark.shuffle.manager tungsten-sort

tungsten-sort是一种类似于sort的shuffle方式,shuffle data还有其他两种方式 sort、hash. (不过官网说 tungsten-sort 应用于spark 1.5版本以上)

15.spark.sql.codegen true

Spark SQL在每次执行次,先把SQL查询编译JAVA字节码。针对执行时间长的SQL查询或频繁执行的SQL查询,此配置能加快查询速度,因为它产生特殊的字节码去执行。但是针对很短的查询,可能会增加开销,因为它必须先编译每一个查询

16.spark.shuffle.spill false

如果设置成true,将会把spill的数据存入磁盘

17.spark.shuffle.consolidateFiles true

我们都知道shuffle默认情况下的文件数据为map tasks * reduce tasks,通过设置其为true,可以使spark合并shuffle的中间文件为reduce的tasks数目。

18.代码中 如果filter过滤后 会有很多空的任务或小文件产生,这时我们使用coalesce或repartition去减少RDD中partition数量。

Spark记录-Spark on Yarn框架的更多相关文章

  1. Spark记录-Spark On YARN内存分配(转载)

    Spark On YARN内存分配(转载) 说明 按照Spark应用程序中的driver分布方式不同,Spark on YARN有两种模式: yarn-client模式.yarn-cluster模式. ...

  2. Spark记录-spark介绍

    Apache Spark是一个集群计算设计的快速计算.它是建立在Hadoop MapReduce之上,它扩展了 MapReduce 模式,有效地使用更多类型的计算,其中包括交互式查询和流处理.这是一个 ...

  3. Spark记录-Spark性能优化解决方案

    Spark性能优化的10大问题及其解决方案 问题1:reduce task数目不合适解决方式:需根据实际情况调节默认配置,调整方式是修改参数spark.default.parallelism.通常,r ...

  4. Spark记录-spark编程介绍

    Spark核心编程 Spark 核心是整个项目的基础.它提供了分布式任务调度,调度和基本的 I/O 功能.Spark 使用一种称为RDD(弹性分布式数据集)一个专门的基础数据结构,是整个机器分区数据的 ...

  5. Spark记录-Spark性能优化(开发、资源、数据、shuffle)

    开发调优篇 原则一:避免创建重复的RDD 通常来说,我们在开发一个Spark作业时,首先是基于某个数据源(比如Hive表或HDFS文件)创建一个初始的RDD:接着对这个RDD执行某个算子操作,然后得到 ...

  6. Spark记录-spark与storm比对与选型(转载)

    大数据实时处理平台市场上产品众多,本文着重讨论spark与storm的比对,最后结合适用场景进行选型. 一.spark与storm的比较 比较点 Storm Spark Streaming 实时计算模 ...

  7. Spark记录-Spark on mesos配置

    1.安装mesos #用centos6的源yum安装 # rpm -Uvh http://repos.mesosphere.io/el/6/noarch/RPMS/mesosphere-el-repo ...

  8. Spark记录-spark报错Unable to load native-hadoop library for your platform

    解决方案一: #cp $HADOOP_HOME/lib/native/libhadoop.so  $JAVA_HOME/jre/lib/amd64 #源码编译snappy---./configure  ...

  9. Spark记录-Spark作业调试

    在本地IDE里直接运行spark程序操作远程集群 一般运行spark作业的方式有两种: 本机调试,通过设置master为local模式运行spark作业,这种方式一般用于调试,不用连接远程集群. 集群 ...

随机推荐

  1. NSLog debug时打印 release时不打印

    创建.h文件,添加以下代码 #ifdef  DEBUG #define NSLog(...)  NSLog(__VA_ARGS__) #else #define NSLog(...)  {} #end ...

  2. shell脚本--文件查找之find命令

    首先是通过文件名称来查找,需要使用一个-name参数. 查询以  .txt结尾的文件,和以 t 开头的文件: ubuntu@ubuntu:~/test$ ls one.txt three.txt tw ...

  3. Linux技巧汇总

    Linux改变用户登录的Shell: usermod -s /bin/zsh 用户名 改变文件夹.文件的所属用户组和用户 chown root:root testfile

  4. [转帖]龙芯下一代处理器微结构GS464E细节曝光

    龙芯下一代处理器微结构GS464E细节曝光 [日期:2015-05-26] 来源:Linux公社  作者:Linux [字体:大 中 小] http://www.linuxidc.com/Linux/ ...

  5. python拉格朗日插值

    #拉格朗日插值代码 import pandas as pd #导入数据分析库Pandas from scipy.interpolate import lagrange #导入拉格朗日插值函数 inpu ...

  6. 通过反射来读取XML格式的ControlTemplate

    在之前的一个WPF项目中,由于设置控件模板在前台xaml中读取失败,由此想到了通过反射的形式来读取该模板,首先将该模板写入一个xml文件中,然后再读取该xml文件,在这里首先介绍一下:资源和嵌入式资源 ...

  7. 《ERP系统原理与实施》

    第一 采购 第二 生产(生产任务->生产准备->加工单->派工单->生产调度->生产监控->数据采集->统计分析) 第三 仓储 第四 质量 第五 财务 第六 ...

  8. TCPDF打印从入门到精通

    1. TCPDF的模块导入 TCPDF的官网为https://tcpdf.org 官方文档有几十个例子:详情参看官方文档! 2. 使用 TCPDF打印 例如:横版表格打印并自动分页 /** * 打印 ...

  9. Windows 增加远程连接数

    转载自 https://blog.csdn.net/scholar_man/article/details/60570827 1.设置终端设置,需要打开[控制面板]---[系统和安全] 2.进入系统和 ...

  10. VMWare 安装 Eclipse

    由于之前已经安装了  OpenJDK 所以 这次我们可以直接下载  eclipse来安装. Eclipse 下载:http://www.eclipse.org/downloads/?osType=li ...