CF 888E Maximum Subsequence
一道比较套路的题,看到数据范围就差不多有想法了吧。
题目大意:给一个数列和\(m\),在数列任选若干个数,使得他们的和对\(m\)取模后最大
取膜最大,好像不能DP/贪心/玄学乱搞啊。\(n\le35\)?果断meet in middle
考虑我们已经搜出了序列前一半的解,那么怎么根据后面的结果合并出结果?
设我们现在得到的和为\(x\)(对\(m\)取膜后),我们令一个数\(y=m-x\),然后在前面的解中查找\(y\)的前驱即可
接下来进行简单的证明:
- 若可以找到前驱\(z\),由于\(z<y\),故\(x+z<m\)。又因为\(z=max(s\in[1,y-1])\),故此时值最大。
- 若无法找到前驱\(z\),此时我们取任何一个值\(s\)都会导致\(x+s>x+y=m\),此时\((x+s)\ mod\ m<x\)(这个很好理解吧)
于是我们每次都二分找出前缀,并取\(max\)即可。
CODE
#include<cstdio>
#include<cctype>
#include<algorithm>
using namespace std;
const int N=40;
int a[N],n,m,sum[1<<20],cnt,ans;
inline char tc(void)
{
static char fl[100000],*A=fl,*B=fl;
return A==B&&(B=(A=fl)+fread(fl,1,100000,stdin),A==B)?EOF:*A++;
}
inline void read(int &x)
{
x=0; char ch; while (!isdigit(ch=tc()));
while (x=(x<<3)+(x<<1)+ch-'0',isdigit(ch=tc()));
}
inline int find(int x)
{
int l=1,r=cnt,res;
while (l<=r)
{
int mid=l+r>>1;
if (sum[mid]<x) res=sum[mid],l=mid+1; else r=mid-1;
}
return res;
}
inline void init(int now,int tot)
{
if (now>(n>>1)) { sum[++cnt]=tot; return; }
init(now+1,(tot+a[now])%m); init(now+1,tot);
}
inline void DFS(int now,int tot)
{
if (now>n) { ans=max(ans,tot+find(m-tot)); return; }
DFS(now+1,(tot+a[now])%m); DFS(now+1,tot);
}
int main()
{
//freopen("CODE.in","r",stdin); freopen("CODE.out","w",stdout);
register int i; read(n); read(m);
for (i=1;i<=n;++i) read(a[i]);
init(1,0); sort(sum+1,sum+cnt+1); DFS((n>>1)+1,0);
return printf("%d",ans),0;
}
CF 888E Maximum Subsequence的更多相关文章
- CF 888E Maximum Subsequence——折半搜索
题目:http://codeforces.com/contest/888/problem/E 一看就是折半搜索?……然后排序双指针. 两个<m的数加起来如果>=m,一定不会更新答案.因为- ...
- Codeforces 888E - Maximum Subsequence(折半枚举(meet-in-the-middle))
888E - Maximum Subsequence 思路:折半枚举. 代码: #include<bits/stdc++.h> using namespace std; #define l ...
- Codeforces 888E Maximum Subsequence
原题传送门 E. Maximum Subsequence time limit per test 1 second memory limit per test 256 megabytes input ...
- 888E - Maximum Subsequence 中途相遇法
Code: #include<cstdio> #include<algorithm> #include<cstring> #include<string> ...
- 【CF888E】Maximum Subsequence(meet in the middle)
[CF888E]Maximum Subsequence(meet in the middle) 题面 CF 洛谷 题解 把所有数分一下,然后\(meet\ in\ the\ middle\)做就好了. ...
- 1007. Maximum Subsequence Sum (25)
Given a sequence of K integers { N1, N2, ..., NK }. A continuous subsequence is defined to be { Ni, ...
- PAT - 测试 01-复杂度2 Maximum Subsequence Sum (25分)
1, N2N_2N2, ..., NKN_KNK }. A continuous subsequence is defined to be { NiN_iNi, Ni+1N_{i ...
- Maximum Subsequence Sum(接上篇)
Given a sequence of K integers { N1, N2, ..., NK }. A continuous subsequence is defined to be { Ni, ...
- PAT 解题报告 1007. Maximum Subsequence Sum (25)
Given a sequence of K integers { N1, N2, ..., NK }. A continuous subsequence is defined to be { Ni, ...
随机推荐
- 安卓开发_WebView设置打开网页缩放问题
之前实现打开网页的方式,测试后,发现不能够对网页进行缩放操作,这对部分网页来说是十分不便的, 百度了一下解决方案 其实只需要加几行代码就可以实现网页缩放操作 settings.setUseWideVi ...
- Dell XPS 13 9306安装 macOS 10.12.6
一直在考虑买一个手上的本,轻薄,办公方便.个人很喜欢mac 下的那些软件,尤其是keynote.就锁定在Macbook Pro上,但是又觉得没有什么玩头,后来一直找,觉得xps也很符合要求,就开始调查 ...
- EntityFramework Code-First 简易教程(八)-------一对一
配置一对一(One-to-One)关系: 两个实体中,如果一个实体的一个实例与另一个实体相关,则我们就叫做一对一关系 查看如下代码: public class Student { public Stu ...
- C语言四舍五入
//今天遇到了四舍五入的问题,这些问题如果不看别人的真的难想出这么巧妙的方法啊.努力积累,早日成为大佬. int i = (int)(a + 0.5) ////小数部分大于0.4,加上0.5就会超过整 ...
- LNMP环境搭建详细教程
之前有一篇博客写的是LAMP的环境搭建,今天来详细介绍一下另外一个模式——LNMP=Linux+Nginx+MySQL+PHP. 一.在Linux系统下nginx的安装过程,先到http://ngin ...
- ccf-20170303--Markdown
我的想法如下图: 代码和题目如下: 问题描述 试题编号: 201703-3 试题名称: Markdown 时间限制: 1.0s 内存限制: 256.0MB 问题描述: 问题描述 Markdown 是一 ...
- CSS Hack的一些知识
测试环境:Windows7 主要测试:IE6.IE7.IE8.Fire Fox3.5.6 次要测试:Chrome4.0.Opera10.10.Safari4.04.360浏览器3.1 为了能够让多个H ...
- Go学习笔记03-结构控制
目录 条件语句 循环语句 条件语句 条件语句用 if 关键字来判定条件,如: func bounded(v int) int { if v > 100 { return 100 } else i ...
- SqlBulkCopy批量添加
/// <summary> /// 添加数据 /// 注:DataTable列名必须和数据库列名一致 /// </summary> /// <returns>< ...
- HEU预热赛
A题: 一道dp的题目 dp[i][j] = k 代表 i行放j个棋子有k中可能 dp[i][j] = dp[i-1][0] + dp[i-1][1] + dp[i-1][2] +...dp[i-1] ...