关于图的遍历,通常有深度优先搜索(DFS)和广度优先搜索(BFS),本文结合一般的图结构(邻接矩阵和邻接表),给出两种遍历算法的模板

1.深度优先搜索(DFS)

#include<iostream>
#include<unordered_map>
#include<queue>
#include<cstring>
#include<cstdlib>
#include<cmath>
#include<algorithm>
#include<sstream>
#include<set>
#include<map>
using namespace std;
#define VERTEX_SIZE 100 //定义图中顶点数目 bool visited[VERTEX_SIZE];//建立顶点标记数组,用于判断顶点是否已经走过
class Graph{
.... //自定义图结构(邻接矩阵或者邻接表)
}; void DFSTraverse(Graph G)
{
memset(visited,false,sizeof(visited));//初始化顶点标记数组
for(int i = 0 ; i < VERTEX_SIZE;i++) //遍历图中的每个连通分量
if(!visited[i])
DFS(G,i);
}
void DFS(Graph G,int v)
{
visited[v] = true;//修改标记
visit(v);//访问顶点v
for(int w = FirstAdjVex(G,v); w >= 0;w = NextAdjVex(G,v,w))//寻找顶点v的邻接点
if(!visited[w])
DFS(G,w);
}
void visit(int v)
{
//自定义操作
;
} int main()
{
...
}

关于这个模板,有几点需要注意的:

(1)此处的模板适用于以邻接表表示的图结构或者以邻接矩阵表示的图结构,若以邻接表表示的话,时间复杂度为O(n+e);若以邻接矩阵表示的话,时间复杂度为O(n^2)。其中n为图中节点的个数,e为边的个数。

(2)遍历图的限制条件比较少,只要是未访问过(visited[v] == false)就可以进行访问。

(3)寻找顶点v的邻接点那部分代码是伪代码,需要根据图的具体表示结构进行寻找(邻接矩阵找到相应行进行遍历;邻接表遍历相应的单链表)

(4)在函数DFSTraverse()中,加入了个for循环,目的是:如果图是非连通图的话,需要遍历每个连通分支。由此,可以利用DFS来判断图的连通性,如果从某个节点开始遍历(任意节点),能遍历到所有节点的话,俺么这个图就是连通的。相当于在上述模板中把DFSTraverse()函数中的for循环换成单次遍历。(参考《王道》P191)

2.广度优先搜索(BFS)

#include<iostream>
#include<unordered_map>
#include<queue>
#include<cstring>
#include<cstdlib>
#include<cmath>
#include<algorithm>
#include<sstream>
#include<set>
#include<map>
using namespace std;
#define VERTEX_SIZE 100 //定义图中顶点数目 bool visited[VERTEX_SIZE];//建立顶点标记数组,用于判断顶点是否已经走过
class Graph{
....//自定义图结构(邻接矩阵或者邻接表)
}; void BFSTraverse(Graph G)
{
memset(visited,false,sizeof(visited));//初始化顶点标记数组
queue<int> Q;
for(int i = 0 ; i < VERTEX_SIZE;i++)
if(!visited[i])
BFS(G,i,Q);
}
void BFS(Graph G,int v,queue<int> &Q)
{
visited[v] = true;
visit(v);//访问顶点v
Q.push(v);//v入队
while(!Q.empty())
{
int u = Q.front();
Q.pop();
for(int w = FirstAdjVex(G,u); w >= 0;w = NextAdjVex(G,u,w))//找到顶点w的所有邻接点
if(!visited[w])//访问w的邻接点,并且访问过后将邻接点入队
{
visited[w] = true;
visit(w);
Q.push(w);
}
}
}
void visit(int v)
{
//自定义操作
;
} int main()
{
...
}

(1)BFS的时间复杂度与DFS是一样的。

(2)BFSTraverse()函数中的for循环和DFSTraverse()中的作用是一样的,都是遍历所有的连通分支,只不过遍历的顺序不同;所以同样可以用BFS来判断图的连通性。

(3)队列存储的顶点都是它们本身已经访问过的但它们的邻接点未被访问过。

图的遍历——DFS和BFS模板(一般的图)的更多相关文章

  1. 图的遍历(DFS、BFS)

    理论: 深度优先搜索(Depth_Fisrst Search)遍历类似于树的先根遍历,是树的先根遍历的推广: 广度优先搜索(Breadth_First Search) 遍历类似于树的按层次遍历的过程: ...

  2. 图的遍历DFS

    图的遍历DFS 与树的深度优先遍历之间的联系 树的深度优先遍历分为:先根,后根 //树的先根遍历 void PreOrder(TreeNode *R){ if(R!=NULL){ visit(R); ...

  3. 图的遍历[DFS][BFS]

    #include<iostream> #include<iostream> #include<cstring> #include<queue> #inc ...

  4. 图的遍历——DFS(矩形空间)

    首先,这里的图不是指的我们一般所说的图结构,而是大小为M*N的矩形区域(也可以看成是一个矩阵).而关于矩形区域的遍历问题经常出现,如“寻找矩阵中的路径”.“找到矩形区域的某个特殊点”等等之类的题目,在 ...

  5. 图的遍历——DFS

    原创 图的遍历有DFS和BFS两种,现选用DFS遍历图. 存储图用邻接矩阵,图有v个顶点,e条边,邻接矩阵就是一个VxV的矩阵: 若顶点1和顶点5之间有连线,则矩阵元素[1,5]置1,若是无向图[5, ...

  6. 图的遍历---DFS

    类型一:邻接表 题目一:员工的重要性 题目描述 给定一个保存员工信息的数据结构,它包含了员工唯一的id,重要度 和 直系下属的id. 比如,员工1是员工2的领导,员工2是员工3的领导.他们相应的重要度 ...

  7. 图的遍历——DFS(邻接矩阵)

    递归 + 标记 一个连通图只要DFS一次,即可打印所有的点. #include <iostream> #include <cstdio> #include <cstdli ...

  8. DFS和BFS模板

    DFS: 该DFS框架以2D坐标范围为例,来体现DFS算法的实现思想 #include<cstdio> #include<cstring> #include<cstdli ...

  9. 16.boost图深度优先遍历DFS

    #include <iostream> #include <boost/config.hpp> //图(矩阵实现) #include <boost/graph/adjac ...

随机推荐

  1. Android测试(三)——APK文件反编译

    APK文件反编译: 在进行反编译操作前,先简单介绍下smali文件: smali是一种文件格式,语法和Jasmine的语言类似,这些smali文件包含开发应用程序时编写的java类的代码. 工具:ja ...

  2. 使用nginx作为webservice接口代理

    通常情况下,企业并不会直接开放系统接口给到外网,并且在企业内部同样有SOA或者ESB这样的接口统一管理的工具. 那么,大多数情况下,如果需要与外部系统,如云系统,或者其他企业的系统做接口时采取的方式如 ...

  3. Eclipse中Server视图加载项目之后项目名后边有带括号的名字

    用习惯了eclipse工具,因为某种原因需要修改项目名称.结果选择项目,按“F2”成功修改后,使用tomcat进行web发布时,选择“Add and Remove”,发现名字还是以前那个项目名称.即使 ...

  4. [Codeforces440D]Berland Federalization

    Problem 给你一棵树,最少删掉哪些边,能使得余下的至少有1个大小刚好为k的残树. 1 ≤ k ≤ n ≤ 400 Solution 用f[i][j]表示以i为根有j个节点的最少删边数量 因为此题 ...

  5. mkpasswd命令

    全称mkpasswd make password(用来生成密码的一个工具):随机生成一些高强度的密码,默认生成9位由大小写字母,特殊符号和数字的密码 [root@master ~]# yum inst ...

  6. constructor&object 的对比

    Constructor vs object A constructor is a special member function in the class to allocate memory to ...

  7. Java语法基础学习DaySeventeen(多线程续)

    一.线程的特点 1.线程的分类 java中的线程分为两类:守护线程和用户线程.唯一的区别是判断JVM何时离开. 守护线程是用来服务用户线程的,通过在start()方法前调用Thread.setDaem ...

  8. asp.net mvc + dapper(ORM框架) + easyui框架简洁的信息管理项目

    1.目录结构: 2.效果图: 3.IndexController控制器: using System; using System.Collections; using System.Collection ...

  9. 基于vue移动音乐webapp跨域请求失败的问题解决

    在学习一位vue大牛的课程<VUE2.0移动端音乐App开发>时,由于vue的版本原因遇到了一些问题 这是其中之一,花费了很多的时间去解决 虽然搞定了这个问题,但是很多东西理解也不是很到位 ...

  10. Tex_安装_在Ubuntu系统下

    $\LaTeX$是一个强大的排版软件,在数学公式.表格.甚至是科学绘图方面有着独特优势.本文在Ubuntu系统下,整理Tex安装相关的操作,以为备忘.所引链接都未同作者商量,如有不妥望及时告知. 命令 ...