http://blog.csdn.net/czp0322/article/details/52161759

solver.prototxt

今天在做FCN实验的时候,发现solver.prototxt文件一直用的都是model里自带的,一直都对里面的参数不是很了解,所以今天认真学习了一下里面各个参数的意义。

DL的任务中,几乎找不到解析解,所以将其转化为数学中的优化问题。sovler的主要作用就是交替调用前向传导和反向传导 (forward & backward) 来更新神经网络的连接权值,从而达到最小化loss,实际上就是迭代优化算法中的参数。

Caffe的solver类提供了6种优化算法,配置文件中可以通过type关键字设置:

  • Stochastic Gradient Descent (type: “SGD”)
  • AdaDelta (type: “AdaDelta”)
  • Adaptive Gradient (type: “AdaGrad”)
  • Adam (type: “Adam”)
  • Nesterov’s Accelerated Gradient (type: “Nesterov”)
  • RMSprop (type: “RMSProp”)

简单地讲,solver就是一个告诉caffe你需要网络如何被训练的一个配置文件。

Solver.prototxt 流程

  1. 首先设计好需要优化的对象,以及用于学习的训练网络和测试网络的prototxt文件(通常是train.prototxt和test.prototxt文件)
  2. 通过forward和backward迭代进行优化来更新参数
  3. 定期对网络进行评价
  4. 优化过程中显示模型和solver的状态

solver参数

base_lr

这个参数代表的是此网络最开始的学习速率(Beginning Learning rate),一般是个浮点数,根据机器学习中的知识,lr过大会导致不收敛,过小会导致收敛过慢,所以这个参数设置也很重要。

lr_policy

这个参数代表的是learning rate应该遵守什么样的变化规则,这个参数对应的是字符串,选项及说明如下:

  • “step” - 需要设置一个stepsize参数,返回base_lr * gamma ^ ( floor ( iter / stepsize ) ),iter为当前迭代次数
  • “multistep” - 和step相近,但是需要stepvalue参数,step是均匀等间隔变化,而multistep是根据stepvalue的值进行变化
  • “fixed” - 保持base_lr不变
  • “exp” - 返回base_lr * gamma ^ iter, iter为当前迭代次数
  • “poly” - 学习率进行多项式误差衰减,返回 base_lr ( 1 - iter / max_iter ) ^ ( power )
  • “sigmoid” - 学习率进行sigmod函数衰减,返回 base_lr ( 1/ 1+exp ( -gamma * ( iter - stepsize ) ) )

gamma

这个参数就是和learning rate相关的,lr_policy中包含此参数的话,需要进行设置,一般是一个实数。

stepsize

This parameter indicates how often (at some iteration count) that we should move onto the next “step” of training. This value is a positive integer.

stepvalue

This parameter indicates one of potentially many iteration counts that we should move onto the next “step” of training. This value is a positive integer. There are often more than one of these parameters present, each one indicated the next step iteration.

max_iter

最大迭代次数,这个数值告诉网络何时停止训练,太小会达不到收敛,太大会导致震荡,为正整数。

momentum

上一次梯度更新的权重,real fraction

weight_decay

权重衰减项,用于防止过拟合。

solver_mode

选择CPU训练或者GPU训练。

snapshot

训练快照,确定多久保存一次model和solverstate,positive integer。

snapshot_prefix

snapshot的前缀,就是model和solverstate的命名前缀,也代表路径。

net

path to prototxt (train and val)

test_iter

每次test_interval的test的迭代次数,假设测试样本总数为10000张图片,一次性执行全部的话效率很低,所以将测试数据分为几个批次进行测试,每个批次的数量就是batch_size。如果batch_size=100,那么需要迭代100次才能将10000个数据全部执行完,所以test_iter设置为100。

test_interval

测试间隔,每训练多少次进行一次测试。

display

间隔多久对结果进行输出

iter_size

这个参数乘上train.prototxt中的batch size是你实际使用的batch size。 相当于读取batchsize * itersize个图像才做一下gradient decent。 这个参数可以规避由于gpu内存不足而导致的batchsize的限制 因为你可以用多个iteration做到很大的batch 即使单次batch有限。

average_loss

取多次foward的loss作平均,进行显示输出。

FCN的solver.prototxt文件

train_net: "train.prototxt"
test_net: "val.prototxt"
test_iter: 736
# make test net, but don't invoke it from the solver itself
test_interval: 999999999
display: 20
average_loss: 20
lr_policy: "fixed"
# lr for unnormalized softmax
base_lr: 1e-14
# high momentum
momentum: 0.99
# no gradient accumulation
iter_size: 1
max_iter: 100000
weight_decay: 0.0005
snapshot: 4000
snapshot_prefix: "snapshot/train"
test_initialization: false

【转】Caffe的solver文件配置的更多相关文章

  1. 【深度学习】之Caffe的solver文件配置(转载自csdn)

    原文: http://blog.csdn.net/czp0322/article/details/52161759 今天在做FCN实验的时候,发现solver.prototxt文件一直用的都是mode ...

  2. caffe(7) solver及其配置

    solver算是caffe的核心的核心,它协调着整个模型的运作.caffe程序运行必带的一个参数就是solver配置文件.运行代码一般为 # caffe train --solver=*_slover ...

  3. Caffe学习系列(7):solver及其配置

    solver算是caffe的核心的核心,它协调着整个模型的运作.caffe程序运行必带的一个参数就是solver配置文件.运行代码一般为 # caffe train --solver=*_slover ...

  4. caffe的python接口学习(2):生成solver文件

    caffe在训练的时候,需要一些参数设置,我们一般将这些参数设置在一个叫solver.prototxt的文件里面,如下: base_lr: 0.001 display: 782 gamma: 0.1 ...

  5. caffe之solver.prototxt文件参数设置

    caffe solver参数意义与设置 batchsize:每迭代一次,网络训练图片的数量,例如:如果你的batchsize=256,则你的网络每迭代一次,训练256张图片:则,如果你的总图片张数为1 ...

  6. caffe的python接口学习(2)生成solver文件

    caffe在训练的时候,需要一些参数设置,我们一般将这些参数设置在一个叫solver.prototxt的文件里面 有一些参数需要计算的,也不是乱设置. 假设我们有50000个训练样本,batch_si ...

  7. 利用Caffe训练模型(solver、deploy、train_val)+python使用已训练模型

    本文部分内容来源于CDA深度学习实战课堂,由唐宇迪老师授课 如果你企图用CPU来训练模型,那么你就疯了- 训练模型中,最耗时的因素是图像大小size,一般227*227用CPU来训练的话,训练1万次可 ...

  8. 利用Caffe训练模型(solver、deploy、train_val) + python如何使用已训练模型

    版权声明:博主原创文章,微信公众号:素质云笔记,转载请注明来源“素质云博客”,谢谢合作!! https://blog.csdn.net/sinat_26917383/article/details/5 ...

  9. [转]caffe中solver.prototxt参数说明

    https://www.cnblogs.com/denny402/p/5074049.html solver算是caffe的核心的核心,它协调着整个模型的运作.caffe程序运行必带的一个参数就是so ...

随机推荐

  1. <<Linux kernel development>> Process Management

    The Process On modern operating systems,processes provide two virtualizations:a virtualized processo ...

  2. springzuul实现限流

    限流描述  https://www.cnblogs.com/LBSer/p/4083131.html 第一步添加pom文件 <!--限流--> <dependency> < ...

  3. Android学习之基础知识一

    一.Android的系统架构: 1.Linux内核层:提供Android硬件的各种驱动(显示驱动,音频驱动,蓝牙驱动,WiFi驱动等等) 2.系统运行库层:提供各种特性支持(数据库支持,绘图支持,浏览 ...

  4. ThreadGroup其实比ExecutorService更好

    用java做抓取的时候免不了要用到多线程的了,因为要同时抓取多个网站或一条线程抓取一个网站的话实在太慢,而且有时一条线程抓取同一个网站的话也比较浪费CPU资源.要用到多线程的等方面,也就免不了对线程的 ...

  5. 11-51单片机ESP8266学习-AT指令(ESP8266作为TCP客户端,连接TCP服务器,用串口调试助手和手机TCP调试助手测试)

    写完题目刚想起来一件事情,如果手机作为客户端(不连接路由器的情况下),手机连接模块的无线会分配一个IP地址,,,这个IP地址事先我也不知道....我先看看AT指令里面有没有一个指令可以打印一下连接自己 ...

  6. C#的delegate简单练习

    delegate中文的意思为委托. 在很久之前,Insus.NET有写过一篇<用一个简单的例子来演绎事件委托>http://www.cnblogs.com/insus/p/3732075. ...

  7. Trusted Block Chain Summit(2018.10.09)

    时间:2018.10.09地点:北京金隅喜来登大酒店

  8. [Spark][python]从 web log 中提取出 UserID 作为key 值,形成新的 RDD

    针对RDD, 使用 keyBy 来构筑 key-line 对: [training@localhost ~]$ cat webs.log 56.31.230.188 - 90700 "GET ...

  9. 【强化学习】python 实现 q-learning 迷宫通用模板

    本文作者:hhh5460 本文地址:https://www.cnblogs.com/hhh5460/p/10145797.html 0.说明 这里提供了二维迷宫问题的一个比较通用的模板,拿到后需要修改 ...

  10. iOS开发简记(2):自定义tabbar

    tabbar是放在APP底部的控件.常见的APP都使用tabbar来进行功能分类的管理,比如微信.QQ等等. 小程需要一个特殊一点的tabbar,要求突显中间的那个按钮,让中间按钮特别显眼,从而引导用 ...