题目网址:http://acm.hdu.edu.cn/showproblem.php?pid=2866

题意:在区间[2,L]内,有多少个素数p,满足方程有解。

分析:

原方程变为: n^(b-1) * (p+n) = m ^ b。

一开始,我们会想,这个方程在什么时候是有解的呢??

肯定当左边式子能够凑成形如  X^b 这样的式子对不对??

那么,也就是说,一定不存正整数k使得n = k*p。

即当且仅当gcd(n^(b-1),(p+n)) = 1时方程有解。

为什么??

我们利用反证法可以进行证明:

假设 gcd(n^(b-1) , (p+n)) != 1

则一定存在一个正整数k,使得 n = k*p。

则该等式转化为: (k+1)* k ^ (b-1) * p^b = m ^ b;

要使等式两边相等,那么(k+1)*k^(b-1)必须配成幂次b的形式。

又因为gcd(k,k+1) = 1。

所以它两无公因子,无法配成x的b次方形式。

所以当gcd(n^(b-1) , (p+n) )  != 1时该方程无解。

通过上面的证明,我们知道该方程有解的条件。

设 n = x ^ b,  p+n = y^b,

则 m = x ^(b-1) * y   ,  且p = y^b - x^b;

因为p = y^b-x^b = (y-x)*(y^(n-1)+y^(n-2)*x+...+x^(n-1)),

对于上面的式子来自幂方差公式: (a^n - b^n) =(a-b)(a^(n-1) + a^(n-2)*b + ... + b^(n-1))

所以 (y-x)|p ,又因为p为质数, 所以能整除p的只有1与p本身,很明显的, y-x != p ,所以  y-x=1, --->  y = x+1;

所以p = (x+1)^b-x^b;

所以我们只要枚举x然后计算出p并且判断其是否为质数即可。

下面帖代码,有问题留言。

    #include<cstdio>
#include<cstring>
typedef long long LL; bool is_prime(int n){
if(n <= )return false;
for(int i = ; i*i <= n; i++)
if(n % i == )return false;
return true;
} int main(){
int L;
while(~scanf("%d",&L)){
int ans = ;
int k = ;
while((LL)*(k+)*(k+)*(k+)-k*k*k <= L){
if(is_prime((LL)*(k+)*(k+)*(k+) - k*k*k))ans++;
k++;
}
if(ans == )printf("No Special Prime!\n");
else printf("%d\n",ans);
}
return ;
}

HDU2866 Special Prime的更多相关文章

  1. 题解-hdu2866 Special Prime

    Problem hdu-2866 题意:求区间\([2,L]\)有多少素数\(p\)满足\(n^3+pn^2=m^3\),其中\(n,m\)属于任意整数 Solution 原式等价于\(n^2(p+n ...

  2. 【HDU】2866:Special Prime【数论】

    Special Prime Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Tot ...

  3. Special Prime

    Special Prime Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Tot ...

  4. hdu-2886 Special Prime---数论推导

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=2866 题目大意: 问你1到L中有多少个素数满足n^3 + p*n^2 = m^3(其中n,m为大于1 ...

  5. 字符串经典的hash算法

    1 概述 链表查找的时间效率为O(N),二分法为log2N,B+ Tree为log2N,但Hash链表查找的时间效率为O(1). 设计高效算法往往需要使用Hash链表,常数级的查找速度是任何别的算法无 ...

  6. 几种经典的Hash算法的实现(源代码)

    来源声明: http://blog.minidx.com/2008/01/27/446.html 先保存下来,以备后面研究,现在还看不懂! 哈希算法将任意长度的二进制值映射为固定长度的较小二进制值,这 ...

  7. hash算法和常见的hash函数 [转]

       Hash,就是把任意长度的输入,通过散列算法,变换成固定长度的输出,该输出就是散列值. 这种转换是一种压缩映射,也就是,散列值的空间通常远小于输入的空间,不同的输入可能 会散列成相同的输出,而不 ...

  8. Java 素数 prime numbers-LeetCode 204

    Description: Count the number of prime numbers less than a non-negative number, n click to show more ...

  9. HDU 4569 Special equations(取模)

    Special equations Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u S ...

随机推荐

  1. HDU 3666

    此题不难,不等式很空易就列出来了,只是要把它转化成减法形式..卡在这了... 其实取一个log对数就好了...要记住这个技巧.用基于dfs的spfa.. #include<iostream> ...

  2. Rails 教程

    Rails 教程 http://web.siwei.tech/ http://www.siwei.me/

  3. linux c编程訪问数据库

    源代码例如以下: #include <stdio.h> #include <stdlib.h> #include <mysql/mysql.h> int main( ...

  4. 对扩展openflow协议的一点思考

         软件定义X变得越来越火,正所谓,Software is eating the world. 软件定义网络也是如此.不论是在工业界还是学术界都将是一次伟大的革命,都在紧随着这个行业的方向,找自 ...

  5. 【.NET】C#中遍历各类数据集合的方法

    [.NET]C#中遍历各类数据集合的方法   C#中遍历各类数据集合的方法,这里自己做下总结: 1.枚举类型             //遍历枚举类型Sample的各个枚举名称             ...

  6. code+12月月赛 火锅盛宴

    时间限制: 2.0 秒 空间限制: 512 MB 题目背景 SkyDec和YJQQQAQ都是Yazid的好朋友.他们都非常喜欢吃火锅.有一天,他们聚在一起,享受一场火锅盛宴. 题目描述 在这场火锅盛宴 ...

  7. 269D

    扫描线+dp 先对坐标排序,然后·用set维护端点,每次插入左端点,扫描到右端点时删除.每次考虑新插入时分割了哪两个木板,自己分别连边,再删除原来的边,最后dp(好像得维护used,有环) #incl ...

  8. java Collection接口

    Collection 1——————Set子接口:无序,不允许重复. 2——————List子接口:有序,允许重复. Set和List对比: 1.set:检索元素的效率比较低,删除和插入效率比较高,删 ...

  9. Integer应该用==还是equals

    问题引出:“Integer应该用==还是equals” 讨论这个问题之前我们先放一段代码 public static void main(String[] args) { Integer a1 = 2 ...

  10. 红黑联盟 php相关资讯

    http://www.2cto.com/tag/phpbanben.html