CF149D 区间dp
http://codeforces.com/problemset/problem/149/D
2 seconds
256 megabytes
standard input
standard output
Once Petya read a problem about a bracket sequence. He gave it much thought but didn't find a solution. Today you will face it.
You are given string s. It represents a correct bracket sequence. A correct bracket sequence is the sequence of opening ("(")
and closing (")") brackets, such that it is possible to obtain a correct mathematical expression from it, inserting numbers and operators between
the brackets. For example, such sequences as "(())()" and "()"
are correct bracket sequences and such sequences as ")()" and "(()"
are not.
In a correct bracket sequence each bracket corresponds to the matching bracket (an opening bracket corresponds to the matching closing bracket and vice versa). For example, in a bracket sequence shown of the figure below, the third bracket corresponds to the
matching sixth one and the fifth bracket corresponds to the fourth one.

You are allowed to color some brackets in the bracket sequence so as all three conditions are fulfilled:
- Each bracket is either not colored any color, or is colored red, or is colored blue.
- For any pair of matching brackets exactly one of them is colored. In other words, for any bracket the following is true: either it or the matching bracket that corresponds to it is colored.
- No two neighboring colored brackets have the same color.
Find the number of different ways to color the bracket sequence. The ways should meet the above-given conditions. Two ways of coloring are considered different if they differ in the color of at least one bracket. As the result can be quite large, print it modulo1000000007 (109 + 7).
The first line contains the single string s (2 ≤ |s| ≤ 700)
which represents a correct bracket sequence.
Print the only number — the number of ways to color the bracket sequence that meet the above given conditions modulo 1000000007(109 + 7).
(())
12
(()())
40
()
4
Let's consider the first sample test. The bracket sequence from the sample can be colored, for example, as is shown on two figures below.


The two ways of coloring shown below are incorrect.

/**
CF149D 区间dp
题目大意:给定一个有效的括号序列对于每个括号有三种涂色方法,涂红色或蓝色或不涂。而且相邻的两个括号不能涂同样的颜色(能够都不涂)
对于每一对括号都要恰有一个括号涂色,问对于整个序列有多少涂色的方法
解题思路:dp[i][j][x][y]表示对于区间(i,j)左括号为x色,右括号为y色,有多少中情况。 对于区间(ij)若i和j是相应则转移到(i+1,j-1)若不正确应则转移到(i,p)*(p+1,j)当中p为i括号的相应点,详细转移请看代码
*/
#include<stdio.h>
#include<iostream>
#include<algorithm>
#include<string.h>
using namespace std;
typedef long long LL;
const LL mod=1e9+7;
char a[800];
int n,Hash[800],tmp[800];
LL dp[705][705][4][4]; void dfs(int l,int r)
{
if(l+1==r)
{
dp[l][r][0][1]=1;
dp[l][r][1][0]=1;
dp[l][r][2][0]=1;
dp[l][r][0][2]=1;
return;
}
if(Hash[r]==l)
{
dfs(l+1,r-1);
for(int i=0;i<3;i++)
{
for(int j=0;j<3;j++)
{
if(i!=1)
dp[l][r][1][0]=(dp[l][r][1][0]+dp[l+1][r-1][i][j])%mod;
if(j!=1)
dp[l][r][0][1]=(dp[l][r][0][1]+dp[l+1][r-1][i][j])%mod;
if(i!=2)
dp[l][r][2][0]=(dp[l][r][2][0]+dp[l+1][r-1][i][j])%mod;
if(j!=2)
dp[l][r][0][2]=(dp[l][r][0][2]+dp[l+1][r-1][i][j])%mod;
}
}
}
else
{
int p=Hash[l];
dfs(l,p);
dfs(p+1,r);
for(int i=0;i<3;i++)
{
for(int j=0;j<3;j++)
{
for(int x=0;x<3;x++)
{
for(int y=0;y<3;y++)
{
if(!(x==1&&y==1||x==2&&y==2))
dp[l][r][i][j]=(dp[l][r][i][j]+(dp[l][p][i][x]*dp[p+1][r][y][j])%mod)%mod;
}
}
}
}
}
}
int main()
{
while(~scanf("%s",a+1))
{
n=strlen(a+1);
int k=0;
memset(tmp,0,sizeof(tmp));
memset(dp,0,sizeof(dp));
for(int i=1;i<=n;i++)
{
if(a[i]=='(')
{
tmp[k++]=i;
}
else
{
Hash[i]=tmp[k-1];
Hash[tmp[k-1]]=i;
k--;
}
}
dfs(1,n);
LL ans=0;
for(int i=0;i<3;i++)
{
for(int j=0;j<3;j++)
{
ans=(ans+dp[1][n][i][j])%mod;
}
}
printf("%lld\n",ans);
}
return 0;
}
CF149D 区间dp的更多相关文章
- CF149D. Coloring Brackets[区间DP !]
题意:给括号匹配涂色,红色蓝色或不涂,要求见原题,求方案数 区间DP 用栈先处理匹配 f[i][j][0/1/2][0/1/2]表示i到ji涂色和j涂色的方案数 l和r匹配的话,转移到(l+1,r-1 ...
- 【BZOJ-4380】Myjnie 区间DP
4380: [POI2015]Myjnie Time Limit: 40 Sec Memory Limit: 256 MBSec Special JudgeSubmit: 162 Solved: ...
- 【POJ-1390】Blocks 区间DP
Blocks Time Limit: 5000MS Memory Limit: 65536K Total Submissions: 5252 Accepted: 2165 Descriptio ...
- 区间DP LightOJ 1422 Halloween Costumes
http://lightoj.com/volume_showproblem.php?problem=1422 做的第一道区间DP的题目,试水. 参考解题报告: http://www.cnblogs.c ...
- BZOJ1055: [HAOI2008]玩具取名[区间DP]
1055: [HAOI2008]玩具取名 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 1588 Solved: 925[Submit][Statu ...
- poj2955 Brackets (区间dp)
题目链接:http://poj.org/problem?id=2955 题意:给定字符串 求括号匹配最多时的子串长度. 区间dp,状态转移方程: dp[i][j]=max ( dp[i][j] , 2 ...
- HDU5900 QSC and Master(区间DP + 最小费用最大流)
题目 Source http://acm.hdu.edu.cn/showproblem.php?pid=5900 Description Every school has some legends, ...
- BZOJ 1260&UVa 4394 区间DP
题意: 给一段字符串成段染色,问染成目标串最少次数. SOL: 区间DP... DP[i][j]表示从i染到j最小代价 转移:dp[i][j]=min(dp[i][j],dp[i+1][k]+dp[k ...
- 区间dp总结篇
前言:这两天没有写什么题目,把前两周做的有些意思的背包题和最长递增.公共子序列写了个总结.反过去写总结,总能让自己有一番收获......就区间dp来说,一开始我完全不明白它是怎么应用的,甚至于看解题报 ...
随机推荐
- php添加文件到压缩文件夹
extension=php_zip.dll注释掉 <?php$filename = "test.zip"; ob_end_clean(); $zip = new ZipArc ...
- Hdu-5992 2016ACM/ICPC亚洲区青岛站 K.Finding Hotels KDtree
题面 题意:二维平面上有很多点,每个点有个权值,现在给你一个点(很多组),权值v,让你找到权值小于等于v的点中离这个点最近的,相同的输出id小的 题解:很裸的KDtree,但是查询的时候有2个小限制, ...
- ArrayList、Vector和LinkedList的区别
ArrayList.Vector和LinkedList类均在java.util包下,均为可伸缩数组,即可以动态改变长度的数组 ArrayList和Vector都是基于存储元素的Object[] arr ...
- 兼容各个浏览器的jquyer zclip复制文本插件 无效的解决办法
项目中使用点击文本复制功能,用了这个兼容各个浏览器的插件,但是发现放在最前面正常,放到嵌套的html中就失效. 解决办法: <span style="position: relativ ...
- 适配器模式(adapter)C++实现
意图:将一个类的接口转换成客户希望的另一个接口. 适用性:1.你想使用一个已存在的类,而它的接口不符合你的需求. 2.你想创建一个可以复用的类,该类可以与其它不相关的类或不可预见的类协同工作. 类适配 ...
- 初学 Ajax(涉及 php)
一直知道 ajax 但是尚未真正了解, 这次看了慕课网的<Ajax全接触>,算是有所收获,入了个门. 需要用到php,因为 Ajax也是向服务器请求(不知道这么解释对不对), 所以还需要配 ...
- WordPress的wordfence插件的设置方法
- 4185 Oil Skimming 最大匹配 奇偶建图
题目大意: 统计相邻(上下左右)的‘#’的对数. 解法: 与题目hdu1507 Uncle Tom's Inherited Land*类似,需要用奇偶建图.就是行+列为奇数的作为X集合,偶尔作为Y集合 ...
- Github 团队协作基本流程与命令操作 图解git工作流程
# 先 fork 项目到自己 github # 1. 从自己仓库克隆到本地(clone 的是项目指定的默认分支,比如 master) git clone git@github.com:me/em.gi ...
- 路飞学城Python-Day100
Django项目之图书馆项目 1.项目架构 2.表结构设计 from django.db import models # Create your models here. #作者详情表 class A ...