CF149D 区间dp
http://codeforces.com/problemset/problem/149/D
2 seconds
256 megabytes
standard input
standard output
Once Petya read a problem about a bracket sequence. He gave it much thought but didn't find a solution. Today you will face it.
You are given string s. It represents a correct bracket sequence. A correct bracket sequence is the sequence of opening ("(")
and closing (")") brackets, such that it is possible to obtain a correct mathematical expression from it, inserting numbers and operators between
the brackets. For example, such sequences as "(())()" and "()"
are correct bracket sequences and such sequences as ")()" and "(()"
are not.
In a correct bracket sequence each bracket corresponds to the matching bracket (an opening bracket corresponds to the matching closing bracket and vice versa). For example, in a bracket sequence shown of the figure below, the third bracket corresponds to the
matching sixth one and the fifth bracket corresponds to the fourth one.

You are allowed to color some brackets in the bracket sequence so as all three conditions are fulfilled:
- Each bracket is either not colored any color, or is colored red, or is colored blue.
- For any pair of matching brackets exactly one of them is colored. In other words, for any bracket the following is true: either it or the matching bracket that corresponds to it is colored.
- No two neighboring colored brackets have the same color.
Find the number of different ways to color the bracket sequence. The ways should meet the above-given conditions. Two ways of coloring are considered different if they differ in the color of at least one bracket. As the result can be quite large, print it modulo1000000007 (109 + 7).
The first line contains the single string s (2 ≤ |s| ≤ 700)
which represents a correct bracket sequence.
Print the only number — the number of ways to color the bracket sequence that meet the above given conditions modulo 1000000007(109 + 7).
(())
12
(()())
40
()
4
Let's consider the first sample test. The bracket sequence from the sample can be colored, for example, as is shown on two figures below.


The two ways of coloring shown below are incorrect.

/**
CF149D 区间dp
题目大意:给定一个有效的括号序列对于每个括号有三种涂色方法,涂红色或蓝色或不涂。而且相邻的两个括号不能涂同样的颜色(能够都不涂)
对于每一对括号都要恰有一个括号涂色,问对于整个序列有多少涂色的方法
解题思路:dp[i][j][x][y]表示对于区间(i,j)左括号为x色,右括号为y色,有多少中情况。 对于区间(ij)若i和j是相应则转移到(i+1,j-1)若不正确应则转移到(i,p)*(p+1,j)当中p为i括号的相应点,详细转移请看代码
*/
#include<stdio.h>
#include<iostream>
#include<algorithm>
#include<string.h>
using namespace std;
typedef long long LL;
const LL mod=1e9+7;
char a[800];
int n,Hash[800],tmp[800];
LL dp[705][705][4][4]; void dfs(int l,int r)
{
if(l+1==r)
{
dp[l][r][0][1]=1;
dp[l][r][1][0]=1;
dp[l][r][2][0]=1;
dp[l][r][0][2]=1;
return;
}
if(Hash[r]==l)
{
dfs(l+1,r-1);
for(int i=0;i<3;i++)
{
for(int j=0;j<3;j++)
{
if(i!=1)
dp[l][r][1][0]=(dp[l][r][1][0]+dp[l+1][r-1][i][j])%mod;
if(j!=1)
dp[l][r][0][1]=(dp[l][r][0][1]+dp[l+1][r-1][i][j])%mod;
if(i!=2)
dp[l][r][2][0]=(dp[l][r][2][0]+dp[l+1][r-1][i][j])%mod;
if(j!=2)
dp[l][r][0][2]=(dp[l][r][0][2]+dp[l+1][r-1][i][j])%mod;
}
}
}
else
{
int p=Hash[l];
dfs(l,p);
dfs(p+1,r);
for(int i=0;i<3;i++)
{
for(int j=0;j<3;j++)
{
for(int x=0;x<3;x++)
{
for(int y=0;y<3;y++)
{
if(!(x==1&&y==1||x==2&&y==2))
dp[l][r][i][j]=(dp[l][r][i][j]+(dp[l][p][i][x]*dp[p+1][r][y][j])%mod)%mod;
}
}
}
}
}
}
int main()
{
while(~scanf("%s",a+1))
{
n=strlen(a+1);
int k=0;
memset(tmp,0,sizeof(tmp));
memset(dp,0,sizeof(dp));
for(int i=1;i<=n;i++)
{
if(a[i]=='(')
{
tmp[k++]=i;
}
else
{
Hash[i]=tmp[k-1];
Hash[tmp[k-1]]=i;
k--;
}
}
dfs(1,n);
LL ans=0;
for(int i=0;i<3;i++)
{
for(int j=0;j<3;j++)
{
ans=(ans+dp[1][n][i][j])%mod;
}
}
printf("%lld\n",ans);
}
return 0;
}
CF149D 区间dp的更多相关文章
- CF149D. Coloring Brackets[区间DP !]
题意:给括号匹配涂色,红色蓝色或不涂,要求见原题,求方案数 区间DP 用栈先处理匹配 f[i][j][0/1/2][0/1/2]表示i到ji涂色和j涂色的方案数 l和r匹配的话,转移到(l+1,r-1 ...
- 【BZOJ-4380】Myjnie 区间DP
4380: [POI2015]Myjnie Time Limit: 40 Sec Memory Limit: 256 MBSec Special JudgeSubmit: 162 Solved: ...
- 【POJ-1390】Blocks 区间DP
Blocks Time Limit: 5000MS Memory Limit: 65536K Total Submissions: 5252 Accepted: 2165 Descriptio ...
- 区间DP LightOJ 1422 Halloween Costumes
http://lightoj.com/volume_showproblem.php?problem=1422 做的第一道区间DP的题目,试水. 参考解题报告: http://www.cnblogs.c ...
- BZOJ1055: [HAOI2008]玩具取名[区间DP]
1055: [HAOI2008]玩具取名 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 1588 Solved: 925[Submit][Statu ...
- poj2955 Brackets (区间dp)
题目链接:http://poj.org/problem?id=2955 题意:给定字符串 求括号匹配最多时的子串长度. 区间dp,状态转移方程: dp[i][j]=max ( dp[i][j] , 2 ...
- HDU5900 QSC and Master(区间DP + 最小费用最大流)
题目 Source http://acm.hdu.edu.cn/showproblem.php?pid=5900 Description Every school has some legends, ...
- BZOJ 1260&UVa 4394 区间DP
题意: 给一段字符串成段染色,问染成目标串最少次数. SOL: 区间DP... DP[i][j]表示从i染到j最小代价 转移:dp[i][j]=min(dp[i][j],dp[i+1][k]+dp[k ...
- 区间dp总结篇
前言:这两天没有写什么题目,把前两周做的有些意思的背包题和最长递增.公共子序列写了个总结.反过去写总结,总能让自己有一番收获......就区间dp来说,一开始我完全不明白它是怎么应用的,甚至于看解题报 ...
随机推荐
- Springboot使用AOP实现统一处理Web请求日志
1.要使我们自定义的记录日志能够打印出来,我们需要先排除springboot默认的记录日志,添加如下的设置 2.新建 resources/log4j.properties 我的设置为: # LOG4J ...
- A - Translation
Problem description The translation from the Berland language into the Birland language is not an ea ...
- 兼容各个浏览器的jquyer zclip复制文本插件 无效的解决办法
项目中使用点击文本复制功能,用了这个兼容各个浏览器的插件,但是发现放在最前面正常,放到嵌套的html中就失效. 解决办法: <span style="position: relativ ...
- docker应用栈实践-nginx处理静态文件
在我的djangoweb应用在docker搭建好之后,发现一些css静态文件返回没有content-type属性,导致浏览器log一堆警告,强迫症的我受不了这一情况 目前的应用栈结构图: 一共四个容器 ...
- 完美解决ios10及以上Safari无法禁止缩放的问题
移动端web缩放有两种: 1.双击缩放: 2.双指手势缩放. 在iOS 10以前,iOS和Android都可以通过一行meta标签来禁止页面缩放 <meta content="widt ...
- CSS 三栏布局入门
首先,我是CSS盲[只听说过box model],没动手实践过,关于margin padding只知名称,不明细节.刚看过一叶斋大哥关于css布局的博文,再动手实践,动手记录下点滴积累以备后用. &l ...
- node linux服务器部署 centos
1下载 wget https://nodejs.org/dist/v6.9.5/node-v6.9.5-linux-x64.tar.xz 2解压 tar xvf node-v6.9.5-linu ...
- WEB笔记-1、HTML 标记与文档结构
1.HTML 标记与文档结构 1.1 块级(block)和行内(inline)标签 块级标签 <h1>-<h6> : 6级标签,h1表示最重要(h1 不仅仅是最大最突出 ...
- WinRAR 5.60 无广告正式版
首先明确WinRAR唯一的官网是这个 https://www.rarlab.com/ 其余的都不要相信. 现在的问题是:不要脸的中国代理强行捆绑广告:即使你花钱注册同样要面对弹窗广告!这就不可接受了! ...
- max 宏定义取消:error C2589: error C2059: 语法错误 : “::”
原文链接:http://blog.csdn.net/danelumax2/article/details/9172465有修改! 一:关于Pcl和WIndef的冲突: 1. 错误输出 ./zlibra ...