ural 1143. Electric Path(凸包上最短哈密顿路径)
题目链接:http://acm.timus.ru/problem.aspx?space=1&num=1143
题意:逆时针给一个凸包的n(n<=200)个顶点坐标,求一个最短哈密顿路径的长度。
解法:求最短哈密顿本身是一个NP问题,可是由于是凸包上,能够利用这个做;有一个性质:凸包上的最短哈密顿路径不会出现交叉。所以能够看出来从一点出发,他要么和顺时针相邻点连接,要么和逆时针相邻点相连接。通过这个性质能够通过dp做:
ans[i][j][0]表示i開始。往后j的点最短路径长度,ans[i][j][0]表示i開始,往前j的点最短路径长度。
转移方程见代码:有了转移方程枚举第一个起始位置即可,复杂度n^3.
/******************************************************
* @author:xiefubao
*******************************************************/
#pragma comment(linker, "/STACK:102400000,102400000")
#include <iostream>
#include <cstring>
#include <cstdlib>
#include <cstdio>
#include <queue>
#include <vector>
#include <algorithm>
#include <cmath>
#include <map>
#include <set>
#include <stack>
#include <string.h>
//freopen ("in.txt" , "r" , stdin);
using namespace std; #define eps 1e-8
#define zero(_) (abs(_)<=eps)
const double pi=acos(-1.0);
typedef long long LL;
const int Max=210;
const int INF=1e9+7; struct point
{
double x,y;
void read()
{
scanf("%lf%lf",&x,&y);
}
} points[Max];
double dist[Max][Max];
int t=0;
int n;
double getdis(int i,int j)
{
return dist[(i+t)%n][(j+t)%n];
}
double getdist(int i,int j)
{
i=(i+n)%n;
j=(j+n)%n;
return sqrt((points[i].x-points[j].x)*(points[i].x-points[j].x)+
(points[i].y-points[j].y)*(points[i].y-points[j].y));
}
double ans[Max][Max][2];
double dfs(int i,int j,int st)
{
i=(i+n)%n;
if(!zero(ans[i][j][st]))
return ans[i][j][st];
if(j==1)
return ans[i][j][st]=getdis(i,i+(st?-1:1));
if(!st)
return ans[i][j][st]=min(dfs(i+1,j-1,0)+getdis(i,i+1),dfs(i+j,j-1,1)+getdis(i,i+j));
else
return ans[i][j][st]=min(dfs(i-1,j-1,1)+getdis(i,i-1),dfs(i-j,j-1,0)+getdis(i,i-j));
}
double solve()
{
memset(ans,0,sizeof ans);
return min(dfs(1,n-2,0)+getdis(0,1),dfs(n-1,n-2,1)+getdis(0,n-1));
}
int main()
{
scanf("%d",&n);
for(int i=0; i<n; i++)
points[i].read();
for(int i=0; i<n; i++)
for(int j=i; j<n; j++)
{
dist[i][j]=getdist(i,j);
dist[j][i]=dist[i][j];
}
double out=INF;
out=min(out,solve());
for(int i=0; i<n-1; i++)
{
t++;
point p=points[0];
for(int j=0; j<n-1; j++)
points[j]=points[j+1];
points[n-1]=p;
out=min(out,solve());
}
printf("%.3f\n",out);
return 0;
}
ural 1143. Electric Path(凸包上最短哈密顿路径)的更多相关文章
- ural 1143. Electric Path
1143. Electric Path Time limit: 1.0 secondMemory limit: 64 MB Background At the team competition of ...
- 【CH0103】最短哈密顿路径
题目大意:给定一个 N 个点的无向图,点有点权,求从 0 号点走到 N-1 号点的最短哈密顿路径是多少. 题解:由于哈密顿路径的定义是每个顶点必须经过且仅能经过一次,因此,可用当前是否经过了这些点和当 ...
- 世界上最短的bash脚本
世界上最短的bash脚本长这样: #!/bin/bash 为啥呢?见下图: 推荐一篇文章,讲解为啥shell脚本开头总是"#!/bin/bash".文风太清奇,不好翻译,看原文吧: ...
- 一个被称为世界上最短的判断IE方法
最近偶然看到一段判断是否为IE浏览器的代码: if(!+[1,]) { console.info("IE 浏览器"); } else { console.info("非 ...
- [Javascript]史上最短的IE浏览器判断代码
今天发现个很有趣的js判断全世界最短的代码,想想之前自己写的判断ie浏览器的,这个实在简单多了 var ie = !+"\v1"; 仅仅需要7bytes!参见这篇文章,<32 ...
- POJ 2187 求凸包上最长距离
简单的旋转卡壳题目 以每一条边作为基础,找到那个最远的对踵点,计算所有对踵点的点对距离 这里求的是距离的平方,所有过程都是int即可 #include <iostream> #includ ...
- UVALive 2453 Wall (凸包)
题意:给你一个多边形的城堡(多个点),使用最短周长的城墙将这个城堡围起来并保证城墙的每个点到城堡上的每个点的距离都不小于l 题解:因为两点间的直线一定比折线短,所以这样做 先使用所有点求得一个凸包,接 ...
- 【BZOJ-1670】Building the Moat护城河的挖掘 Graham扫描法 + 凸包
1670: [Usaco2006 Oct]Building the Moat护城河的挖掘 Time Limit: 3 Sec Memory Limit: 64 MBSubmit: 464 Solv ...
- HDU 4946 Area of Mushroom (几何凸包)
题目链接 题意:给定n个人,每个人有一个速度v方向任意.如果平面中存在一个点只有某个人到达的时间最短(即没有人比这个人到的时间更短或相同),那么我们定义这个店归这个人管辖,现在问这些人中哪些人的管辖范 ...
随机推荐
- DCL授权命令
create user 用户名//创建用户 grant DBA to 用户名//授权 revoke //撤销权限
- 洛谷 2921 记忆化搜索 tarjan 基环外向树
洛谷 2921 记忆化搜索 tarjan 传送门 (https://www.luogu.org/problem/show?pid=2921) 做这题的经历有点玄学,,起因是某个random题的同学突然 ...
- POJ 1715
同样是确定某位上的数,当确定某一位后,其后面的排列数是确定的,所以可以用除法和取余数的方法来确定这一位的值 #include <iostream> #include <cstdio& ...
- iOS开发自己定义键盘回车键Return Key
在iOS开发中.用户在进行文本输入的时候,往往会用到虚拟键盘上的回车键,也就是Return Key.回车键有时候能够是"完毕"(表示输入结束).能够是"下一项" ...
- struts.xml中出现extends undefined package struts-default解决的方法
在struts.xml中出现extends undefined package struts-default,经过查阅资料原来是由于没有联网的缘故. 这样解决:在myeclipse中关联本地的dtd文 ...
- struts2请求过程源代码分析
struts2请求过程源代码分析 Struts2是Struts社区和WebWork社区的共同成果.我们甚至能够说,Struts2是WebWork的升级版.他採用的正是WebWork的核心,所以.Str ...
- cocos2d-x 2.2.2 在lua中更换CCSprite的图片
废话不多说,直接上代码 --lua --获取场景 local scene= CCDirector:sharedDirector():getRunningScene() --创建精灵 local tes ...
- vue 父子组件传值以及方法调用,平行组件之间传值以及方法调用大全
vue项目经常需要组件间的传值以及方法调用,具体场景就不说了,都知道.基本上所有的传值都可以用vuex状态管理来实现,只要在组件内监听vuex就好. vue常用的传值方式以及方法有: 1. 父值传子( ...
- Windows 10 10586 升级
- JavaScript学习——使用JS完成页面定时弹出广告
1.获取图片的位置(document.getElementById(“”)) 隐藏图片:display:none 定时操作:setInterval(“显示图片的函数”,3000); 2.步骤分析 ( ...