Codeforces Round #198 (Div. 2)

昨天看到奋斗群的群赛,好奇的去做了一下,

大概花了3个小时Ak,我大概可以退役了吧

那下面来稍微总结一下

A. The Wall

Iahub and his friend Floyd have started painting a wall. Iahub is painting the wall red and Floyd is painting it pink. You can consider the wall being made of a very large number of bricks, numbered 1, 2, 3 and so on.

Iahub has the following scheme of painting: he skips x - 1 consecutive bricks, then he paints the x-th one. That is, he'll paint bricks x, 2·x, 3·x and so on red. Similarly, Floyd skips y - 1 consecutive bricks, then he paints the y-th one. Hence he'll paint bricks y, 2·y, 3·y and so on pink.

After painting the wall all day, the boys observed that some bricks are painted both red and pink. Iahub has a lucky number a and Floyd has a lucky number b. Boys wonder how many bricks numbered no less than a and no greater than b are painted both red and pink. This is exactly your task: compute and print the answer to the question.

input
2 3 6 18
output
3
Note

Let's look at the bricks from a to b (a = 6, b = 18). The bricks colored in red are numbered 6, 8, 10, 12, 14, 16, 18. The bricks colored in pink are numbered 6, 9, 12, 15, 18. The bricks colored in both red and pink are numbered with 6, 12 and 18.

一句话题意:给你a,b,n,m,求在[n,m](闭区间)内有多少个数可以同时整除a和b

很显然非常清真的一道A题,题意很明晰,

求出a,b的最小公倍数,然后求出n以内和m以内各有几个,

最后相减,注意因为是闭区间,所以要特判n是否符合

#include<bits/stdc++.h>
using namespace std;
int main(){
int a,b,n,m;
scanf("%d%d%d%d",&a,&b,&n,&m);
int lcs=a/__gcd(a,b)*b,ans1=n/lcs,ans2=m/lcs;
if (n%lcs==) ans1--;
printf("%d",ans2-ans1);
}

B. Maximal Area Quadrilateral

Iahub has drawn a set of n points in the cartesian plane which he calls "special points". A quadrilateral is a simple polygon without self-intersections with four sides (also called edges) and four vertices (also called corners). Please note that a quadrilateral doesn't have to be convex. A special quadrilateral is one which has all four vertices in the set of special points. Given the set of special points, please calculate the maximal area of a special quadrilateral.

input
5
0 0
0 4
4 0
4 4
2 3
output
16.000000
Note

In the test example we can choose first 4 points to be the vertices of the quadrilateral. They form a square by side 4, so the area is 4·4 = 16.

一句话题意:给你n个点,让你选出四个点,使得这四个点组成的四边形面积最大

感觉这道题其实有D题的难度,可参见考试时A掉人数:A>D>C>B>E

首先我们可以把一个四边形分成两个三角形来求

这样那我们可以O(n^2)枚举对角线,然后就可以求出上三角形的最大值和下三角形的最大值

我们就可以得出最大的四边形的面积,

求三角形面积可以用叉积,这样,就可以得到了O(n^3)的了

***如果不会叉积的,极力推荐去学习一下计算几何初步

#include <cstdio>
#include <complex>
#include <algorithm>
using namespace std;
typedef complex<int> xint;
const int inf=;
xint point[];
int crs(xint a,xint b){
return (a.real()*b.imag()-a.imag()*b.real());
} int main(){
int n,s=; scanf("%d",&n);
for (int i=,x,y;i<n&&==scanf("%d %d",&x,&y);++i)
point[i]=xint(x,y);
for (int i=;i<n;++i)
for (int j=i+;j<n;++j){
int a=inf,b=-inf;
for (int k=;k<n;++k){
int c=crs(point[k]-point[i],point[j]-point[i]);
if(c<) a=min(a,c); else if(c>) b=max(b,c);
if(a<&&b>) s=max(s,b-a);
}
}
printf("%.8lf\n",s/2.0);
}

Codeforces Round #198 (Div. 2)A,B题解的更多相关文章

  1. Codeforces Round #198 (Div. 2)C,D题解

    接着是C,D的题解 C. Tourist Problem Iahub is a big fan of tourists. He wants to become a tourist himself, s ...

  2. Codeforces Round #612 (Div. 2) 前四题题解

    这场比赛的出题人挺有意思,全部magic成了青色. 还有题目中的图片特别有趣. 晚上没打,开virtual contest打的,就会前三道,我太菜了. 最后看着题解补了第四道. 比赛传送门 A. An ...

  3. Codeforces Round #672 (Div. 2) A - C1题解

    [Codeforces Round #672 (Div. 2) A - C1 ] 题目链接# A. Cubes Sorting 思路: " If Wheatley needs more th ...

  4. Codeforces Round #198 (Div. 2)E题解

    E. Iahub and Permutations Iahub is so happy about inventing bubble sort graphs that he's staying all ...

  5. Codeforces Round #198 (Div. 2) E. Iahub and Permutations —— 容斥原理

    题目链接:http://codeforces.com/contest/340/problem/E E. Iahub and Permutations time limit per test 1 sec ...

  6. Codeforces Round #614 (Div. 2) A-E简要题解

    链接:https://codeforces.com/contest/1293 A. ConneR and the A.R.C. Markland-N 题意:略 思路:上下枚举1000次扫一遍,比较一下 ...

  7. Codeforces Round #610 (Div. 2) A-E简要题解

    contest链接: https://codeforces.com/contest/1282 A. Temporarily unavailable 题意: 给一个区间L,R通有网络,有个点x,在x+r ...

  8. Codeforces Round #611 (Div. 3) A-F简要题解

    contest链接:https://codeforces.com/contest/1283 A. Minutes Before the New Year 题意:给一个当前时间,输出离第二天差多少分钟 ...

  9. Codeforces Round #198 (Div. 1) D. Iahub and Xors 二维树状数组*

    D. Iahub and Xors   Iahub does not like background stories, so he'll tell you exactly what this prob ...

随机推荐

  1. JavaScript特效之图片特效放大,缩小,旋转

    效果图如下: 效果代码如下: <!doctype html> <html lang="en"> <head> <meta charset= ...

  2. OpenCV:OpenCV目标检测Hog+SWindow源代码分析

    参考文章:OpenCV中的HOG+SVM物体分类 此文主要描述出HOG分类的调用堆栈. 使用OpenCV作图像检测, 使用HOG检测过程,其中一部分源代码如下: 1.HOG 检测底层栈的检测计算代码: ...

  3. 安卓代码迁移:Program "sh" not found in PATH

    Description    Resource    Path    Location    Type  Program  "sh"  not  found in PATH 参考链 ...

  4. (转)C#开发微信门户及应用(6)--微信门户菜单的管理操作

    http://www.cnblogs.com/wuhuacong/p/3701961.html 前面几篇继续了我自己对于C#开发微信门户及应用的技术探索和相关的经验总结,继续探索微信API并分享相关的 ...

  5. rabbitmq和kafka的区别

    1.吞吐量kafka吞吐量更高: 1)Zero Copy机制,内核copy数据直接copy到网络设备,不必经过内核到用户再到内核的copy,减小了copy次数和上下文切换次数,大大提高了效率. 2)磁 ...

  6. esp32(M5STACK)程序烧写(Ubuntu)

    由于我们的开发环境在Ubuntu上,所以介绍一下如何在Ubuntu上烧写esp32的程序 首先下载esptools   pip install esptool           擦除 sudo es ...

  7. [转载]ext4文件系统的delalloc选项造成单次写延迟增加的分析

    转载http://www.cnblogs.com/cobbliu/p/5603472.html 最近我们的服务进程遇到kill -15后处于Z的状态,变为了僵尸进程,经过/proc/{thread_i ...

  8. ios开发——runtime

    首先,最重要的一点,学runtime能干嘛? 1.使用runtime改变变量值 2.使用runtime交换方法 3.使用runtime添加方法 4.使用runtime给分类扩展属性 学了runtime ...

  9. Python列表的复制

    1.直接按名字赋值: my_habit = ['game', 'running'] friend_habit = my_habit my_habit.append('swimming') friend ...

  10. Redis参数

    phpredis是php的一个扩展,效率是相当高有链表排序功能,对创建内存级的模块业务关系 很有用;以下是redis官方提供的命令使用技巧: Redis::__construct构造函数$redis ...