【28.57%】【codeforces 711E】ZS and The Birthday Paradox
time limit per test2 seconds
memory limit per test256 megabytes
inputstandard input
outputstandard output
ZS the Coder has recently found an interesting concept called the Birthday Paradox. It states that given a random set of 23 people, there is around 50% chance that some two of them share the same birthday. ZS the Coder finds this very interesting, and decides to test this with the inhabitants of Udayland.
In Udayland, there are 2n days in a year. ZS the Coder wants to interview k people from Udayland, each of them has birthday in one of 2n days (each day with equal probability). He is interested in the probability of at least two of them have the birthday at the same day.
ZS the Coder knows that the answer can be written as an irreducible fraction . He wants to find the values of A and B (he does not like to deal with floating point numbers). Can you help him?
Input
The first and only line of the input contains two integers n and k (1 ≤ n ≤ 1018, 2 ≤ k ≤ 1018), meaning that there are 2n days in a year and that ZS the Coder wants to interview exactly k people.
Output
If the probability of at least two k people having the same birthday in 2n days long year equals (A ≥ 0, B ≥ 1, ), print the A and B in a single line.
Since these numbers may be too large, print them modulo 106 + 3. Note that A and B must be coprime before their remainders modulo 106 + 3 are taken.
Examples
input
3 2
output
1 8
input
1 3
output
1 1
input
4 3
output
23 128
Note
In the first sample case, there are 2^3 = 8 days in Udayland. The probability that 2 people have the same birthday among 2 people is clearly 1/8, so A = 1, B = 8.
In the second sample case, there are only 2^1 = 2 days in Udayland, but there are 3 people, so it is guaranteed that two of them have the same birthday. Thus, the probability is 1 and A = B = 1.
【题解】
每个人的生日都有2^n个可能;然后有k个人;
要求的是k个人里面至少有两个人的生日相同的概率;
正难则反;
求出所有人的生日都不同的概率p;
再用1减去p就可以了;
p=A(2^n,k)/((2^n)^k);
A是排列数;
写成乘法的形式就变成
p=(2^n)(2^n-1)(2^n-2)···(2^n-(k-1))/((2^n)^k)
分子分母同时除2^n;
(2^n-1)(2^n-2)···*(2^n-(k-1))/((2^(k-1))^n);
然后就是约分了;
分子的2的数目比分母少;
那么公约数就是2^temp次方了;
temp是分子的所含的因子2的个数;
而(2^n-1)···(2^n-(k-1))中
2^n-i的2因子的个数显然是i决定的,i有几个2因子,这项就有几个2因子;
比如2^n-2,2有一个2因子,所以这项有1个2因子;
实际上就可以转化为(k-1)!的2因子的个数;
有个关于阶乘(k-1)!素因子p的公式;
temp = ∑(k-1)/i;
其中i = p^1、p^2、p^3..p^m;
且2^m<= k-1;
求出来个数就好;
设为temp;
则可以约掉的数就是2^temp
分子和分母都要除2^temp;
但是要求余?
除法求余?
求乘法逆元!
乘法逆元?
比如要求(a/b)%p;
且(b*k)%p==1;
则(a/b)%p == (a*k)%p;
这个k就是b的乘法逆元。(可能有定义不对的地方。谅解下);
同时a/b一定要为整数;
证明:
因为(b*k)%p=1
所以b*k = p*x+1;
k = (p*x+1)/b;
则(a*k)%p=(apx/b+a/b)%p = ((a/b)*x*p)%p+(a/b)%p;
因为b能够整除a,所以a/b为整数,又乘上了p,则%p不就为0吗;
则(a*k)%p == (a/b)%p;
如何求这个k
b*k = p*x+1;
->k*b+(-x)*p=1
;
即解一个二元一次方程组;
->用扩展欧几里得算法求解;
扩展欧几里得算法?
ax+by=gcd(a,b);
这里如果a和b互质(因为p是质数而b是肯定小于p的(因为要取余嘛),所以b和p肯定是互质的);
ax+by=1
这里进行一下递推;
设
x1a+y1b=gcd(a,b);
x2b+y2(a%b) = gcd(b,a%b);
而又欧几里得算法gcd(a,b)==gcd(b,a%b);
所以x1a+y1b=x2b+y2(a%b);
a%b可以写出a-(a/b)*b 这里的/是整除
则
x1a+y1b=x2b+y2(a-(a/b)*b)
x1a+y1b=x2b+y2a-y2(a/b)*b
x1a+y1b=y2a+(x2-(a/b)*y2)*b
->x1=y2
->y1 =x2-(a/b)*y2
根据这个递推式
可以写出扩展欧几里得算法的程序
void ex_gcd(LL a,LL b,LL &x,LL &y)
{
if (b == 0)//gcd(a,b)==gcd(a,0)==a;所以要使得xa+yb==gcd(a,b)只要让x==1,y==0即可
{
x = 1;y = 0;
return;
}
ex_gcd(b,a % b,x,y);
LL temp = y;
y = x-(a/b)*temp;
x = temp;
}
我们只要执行
ex_gcd(2^temp,p,ni,useless);
我们要的是这个方程的k
k*b+(-x)*p=1
所以最后得到的ni就是k,也即2^temp的乘法逆元;
对于分母直接乘上这个ni。就表示除去了公约数;
对于分子
(2^n-1)(2^n-2)···*(2^n-(k-1))
如果k-1>=mod;则我们最少得到了连续的mod个数;
则这里面肯定有mod的倍数;
所以此时分子为0;
直接输出 分母-‘0’ 分母即可;
对于k-1小于mod的情况,这个时候k很小了。直接暴力求解
(2^n-1)(2^n-2)···*(2^n-(k-1))%mod即可;
然后输出 (分母-分子+mod)%mod 分母 即可;
#include <cstdio>
#include <algorithm>
#define LL long long
using namespace std;
const LL mod = 1e6+3;
const int INF = 63;
LL n,k,tmp = 0,ni,fz,fm;
LL ksm(LL x,LL y)
{
if (y == 0)
return 1;
LL temp =ksm(x,y>>1);
temp = (temp*temp)%mod;
if (y&1)
temp = (temp*x)%mod;
return temp;
}
void ex_gcd(LL a,LL b,LL &x,LL &y)
{
if (b == 0)
{
x = 1;y = 0;
return;
}
ex_gcd(b,a % b,x,y);
LL temp = y;
y = x-(a/b)*temp;
x = temp;
}
int main()
{
scanf("%I64d%I64d",&n,&k);
bool flag = false;
if (n >= 63)
flag = true;
else
{
LL temp = 1;
for (int i = 1;i <= n;i++)
{
temp = temp *2;
if (temp >=k)
{
flag = true;
break;
}
}
}
if (!flag)
{
puts("1 1");
return 0;
}
LL i;
for (i = 2;i <= (k-1);i<<=1)
tmp+=(k-1)/i;
tmp = ksm(2,tmp);
LL fm = ksm(ksm(2,k-1),n);
LL nu;//这个nu变量是没用的
ex_gcd(tmp,mod,ni,nu);
ni = (ni + mod) %mod;//求出来的ni是乘法逆元
fm = (fm * ni)%mod;
if (k-1>= mod)
printf("%I64d %I64d\n",fm,fm);
else//暴力求解分子
{
LL a = ksm(2,n);
LL fz = 1;
for (i = 1;i <= k-1;i++)
fz = (fz*((a-i+mod) % mod))%mod;
fz=(fz*ni)%mod;
fz = (fm-fz+mod)%mod;
printf("%I64d %I64d\n",fz,fm);
}
return 0;
}
【28.57%】【codeforces 711E】ZS and The Birthday Paradox的更多相关文章
- codeforces 711E E. ZS and The Birthday Paradox(数学+概率)
题目链接: E. ZS and The Birthday Paradox. time limit per test 2 seconds memory limit per test 256 megaby ...
- 【28.57%】【codeforces 615C】 Running Track
time limit per test1 second memory limit per test512 megabytes inputstandard input outputstandard ou ...
- 【 BowWow and the Timetable CodeForces - 1204A 】【思维】
题目链接 可以发现 十进制4 对应 二进制100 十进制16 对应 二进制10000 十进制64 对应 二进制1000000 可以发现每多两个零,4的次幂就增加1. 用string读入题目给定的二进制 ...
- 【57.97%】【codeforces Round #380A】Interview with Oleg
time limit per test1 second memory limit per test256 megabytes inputstandard input outputstandard ou ...
- 【34.57%】【codeforces 557D】Vitaly and Cycle
time limit per test1 second memory limit per test256 megabytes inputstandard input outputstandard ou ...
- 【75.28%】【codeforces 764B】Decoding
time limit per test1 second memory limit per test256 megabytes inputstandard input outputstandard ou ...
- 【30.93%】【codeforces 558E】A Simple Task
time limit per test5 seconds memory limit per test512 megabytes inputstandard input outputstandard o ...
- 【77.78%】【codeforces 625C】K-special Tables
time limit per test 2 seconds memory limit per test 256 megabytes input standard input output standa ...
- 【codeforces 760A】Petr and a calendar
time limit per test2 seconds memory limit per test256 megabytes inputstandard input outputstandard o ...
随机推荐
- JS学习笔记 - 面向对象
类.对象类:模子对象:产品(成品) 蛋糕(对象) 模子(类) Array 类 arr 对象 Array.push(); 错 arr.push(); 对 new arr(); 错 原型prototype ...
- 【CS Round #48 (Div. 2 only)】Dominant Free Sets
[链接]h在这里写链接 [题意] 让你在n个点组成的集合里面选取不为空的集合s. 使得这里面的点没有出现某个点a和b,ax>=bx且ay>=by; 问你s的个数. [题解] 我们把这些点按 ...
- 错误代码: 1449 The user specified as a definer ('root'@'%') does not exist
1. 错误描写叙述 1 queries executed, 0 success, 1 errors, 0 warnings 查询:call analyse_use('20150501','201506 ...
- Spring Boot + Jersey
Jersey是一个很好的Java REST API库.当你用Jersey实现REST的时候.是很自然的.同一时候Spring Boot是Java世界中还有一个很好的工具.它降低了程序的应用配置(< ...
- thinkphp事务机制
thinkphp事务机制 一.总结 下面文章也要看,下面有抛出异常(自己提供错误信息那种) 1.事务机制(原子性):所有的事情都完成了就提交,否则回滚.电商里面用的多,付钱买东西的时候. 2.样例(简 ...
- angular 引入material-ui
第一步:安装material和cdk和animations,一个也不能缺,否则会报错. npm install --save @angular/material @angular/cdk @angul ...
- Tomcat请求处理过程(Tomcat源代码解析五)
watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQv/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/ ...
- stm32的DMA基础,配置流程解析
这是手册上的流程 下面是对应的库函数 下面我们就按流程去看相应的寄存器: 步骤1里的寄存器, 进入下面的函数内部: 可以找到对应的操作: 再看下一个重要的寄存器: 再看下一个寄存器: 还有一种模式是: ...
- DI:依赖注入详解
DI(依赖注入) 依赖注入的理解: 一般写程序的时候service层都需要用到dao层,所以一般都是在service层里面new dao ,而现在利用依赖注入的方式,直接把dao给了service层 ...
- [转载]Ocelot简易教程(四)之请求聚合以及服务发现
上篇文章给大家讲解了Ocelot的一些特性并对路由进行了详细的介绍,今天呢就大家一起来学习下Ocelot的请求聚合以及服务发现功能.希望能对大家有所帮助. 作者:依乐祝 原文地址:https://ww ...