【28.57%】【codeforces 711E】ZS and The Birthday Paradox
time limit per test2 seconds
memory limit per test256 megabytes
inputstandard input
outputstandard output
ZS the Coder has recently found an interesting concept called the Birthday Paradox. It states that given a random set of 23 people, there is around 50% chance that some two of them share the same birthday. ZS the Coder finds this very interesting, and decides to test this with the inhabitants of Udayland.
In Udayland, there are 2n days in a year. ZS the Coder wants to interview k people from Udayland, each of them has birthday in one of 2n days (each day with equal probability). He is interested in the probability of at least two of them have the birthday at the same day.
ZS the Coder knows that the answer can be written as an irreducible fraction . He wants to find the values of A and B (he does not like to deal with floating point numbers). Can you help him?
Input
The first and only line of the input contains two integers n and k (1 ≤ n ≤ 1018, 2 ≤ k ≤ 1018), meaning that there are 2n days in a year and that ZS the Coder wants to interview exactly k people.
Output
If the probability of at least two k people having the same birthday in 2n days long year equals (A ≥ 0, B ≥ 1, ), print the A and B in a single line.
Since these numbers may be too large, print them modulo 106 + 3. Note that A and B must be coprime before their remainders modulo 106 + 3 are taken.
Examples
input
3 2
output
1 8
input
1 3
output
1 1
input
4 3
output
23 128
Note
In the first sample case, there are 2^3 = 8 days in Udayland. The probability that 2 people have the same birthday among 2 people is clearly 1/8, so A = 1, B = 8.
In the second sample case, there are only 2^1 = 2 days in Udayland, but there are 3 people, so it is guaranteed that two of them have the same birthday. Thus, the probability is 1 and A = B = 1.
【题解】
每个人的生日都有2^n个可能;然后有k个人;
要求的是k个人里面至少有两个人的生日相同的概率;
正难则反;
求出所有人的生日都不同的概率p;
再用1减去p就可以了;
p=A(2^n,k)/((2^n)^k);
A是排列数;
写成乘法的形式就变成
p=(2^n)(2^n-1)(2^n-2)···(2^n-(k-1))/((2^n)^k)
分子分母同时除2^n;
(2^n-1)(2^n-2)···*(2^n-(k-1))/((2^(k-1))^n);
然后就是约分了;
分子的2的数目比分母少;
那么公约数就是2^temp次方了;
temp是分子的所含的因子2的个数;
而(2^n-1)···(2^n-(k-1))中
2^n-i的2因子的个数显然是i决定的,i有几个2因子,这项就有几个2因子;
比如2^n-2,2有一个2因子,所以这项有1个2因子;
实际上就可以转化为(k-1)!的2因子的个数;
有个关于阶乘(k-1)!素因子p的公式;
temp = ∑(k-1)/i;
其中i = p^1、p^2、p^3..p^m;
且2^m<= k-1;
求出来个数就好;
设为temp;
则可以约掉的数就是2^temp
分子和分母都要除2^temp;
但是要求余?
除法求余?
求乘法逆元!
乘法逆元?
比如要求(a/b)%p;
且(b*k)%p==1;
则(a/b)%p == (a*k)%p;
这个k就是b的乘法逆元。(可能有定义不对的地方。谅解下);
同时a/b一定要为整数;
证明:
因为(b*k)%p=1
所以b*k = p*x+1;
k = (p*x+1)/b;
则(a*k)%p=(apx/b+a/b)%p = ((a/b)*x*p)%p+(a/b)%p;
因为b能够整除a,所以a/b为整数,又乘上了p,则%p不就为0吗;
则(a*k)%p == (a/b)%p;
如何求这个k
b*k = p*x+1;
->k*b+(-x)*p=1
;
即解一个二元一次方程组;
->用扩展欧几里得算法求解;
扩展欧几里得算法?
ax+by=gcd(a,b);
这里如果a和b互质(因为p是质数而b是肯定小于p的(因为要取余嘛),所以b和p肯定是互质的);
ax+by=1
这里进行一下递推;
设
x1a+y1b=gcd(a,b);
x2b+y2(a%b) = gcd(b,a%b);
而又欧几里得算法gcd(a,b)==gcd(b,a%b);
所以x1a+y1b=x2b+y2(a%b);
a%b可以写出a-(a/b)*b 这里的/是整除
则
x1a+y1b=x2b+y2(a-(a/b)*b)
x1a+y1b=x2b+y2a-y2(a/b)*b
x1a+y1b=y2a+(x2-(a/b)*y2)*b
->x1=y2
->y1 =x2-(a/b)*y2
根据这个递推式
可以写出扩展欧几里得算法的程序
void ex_gcd(LL a,LL b,LL &x,LL &y)
{
if (b == 0)//gcd(a,b)==gcd(a,0)==a;所以要使得xa+yb==gcd(a,b)只要让x==1,y==0即可
{
x = 1;y = 0;
return;
}
ex_gcd(b,a % b,x,y);
LL temp = y;
y = x-(a/b)*temp;
x = temp;
}
我们只要执行
ex_gcd(2^temp,p,ni,useless);
我们要的是这个方程的k
k*b+(-x)*p=1
所以最后得到的ni就是k,也即2^temp的乘法逆元;
对于分母直接乘上这个ni。就表示除去了公约数;
对于分子
(2^n-1)(2^n-2)···*(2^n-(k-1))
如果k-1>=mod;则我们最少得到了连续的mod个数;
则这里面肯定有mod的倍数;
所以此时分子为0;
直接输出 分母-‘0’ 分母即可;
对于k-1小于mod的情况,这个时候k很小了。直接暴力求解
(2^n-1)(2^n-2)···*(2^n-(k-1))%mod即可;
然后输出 (分母-分子+mod)%mod 分母 即可;
#include <cstdio>
#include <algorithm>
#define LL long long
using namespace std;
const LL mod = 1e6+3;
const int INF = 63;
LL n,k,tmp = 0,ni,fz,fm;
LL ksm(LL x,LL y)
{
if (y == 0)
return 1;
LL temp =ksm(x,y>>1);
temp = (temp*temp)%mod;
if (y&1)
temp = (temp*x)%mod;
return temp;
}
void ex_gcd(LL a,LL b,LL &x,LL &y)
{
if (b == 0)
{
x = 1;y = 0;
return;
}
ex_gcd(b,a % b,x,y);
LL temp = y;
y = x-(a/b)*temp;
x = temp;
}
int main()
{
scanf("%I64d%I64d",&n,&k);
bool flag = false;
if (n >= 63)
flag = true;
else
{
LL temp = 1;
for (int i = 1;i <= n;i++)
{
temp = temp *2;
if (temp >=k)
{
flag = true;
break;
}
}
}
if (!flag)
{
puts("1 1");
return 0;
}
LL i;
for (i = 2;i <= (k-1);i<<=1)
tmp+=(k-1)/i;
tmp = ksm(2,tmp);
LL fm = ksm(ksm(2,k-1),n);
LL nu;//这个nu变量是没用的
ex_gcd(tmp,mod,ni,nu);
ni = (ni + mod) %mod;//求出来的ni是乘法逆元
fm = (fm * ni)%mod;
if (k-1>= mod)
printf("%I64d %I64d\n",fm,fm);
else//暴力求解分子
{
LL a = ksm(2,n);
LL fz = 1;
for (i = 1;i <= k-1;i++)
fz = (fz*((a-i+mod) % mod))%mod;
fz=(fz*ni)%mod;
fz = (fm-fz+mod)%mod;
printf("%I64d %I64d\n",fz,fm);
}
return 0;
}
【28.57%】【codeforces 711E】ZS and The Birthday Paradox的更多相关文章
- codeforces 711E E. ZS and The Birthday Paradox(数学+概率)
题目链接: E. ZS and The Birthday Paradox. time limit per test 2 seconds memory limit per test 256 megaby ...
- 【28.57%】【codeforces 615C】 Running Track
time limit per test1 second memory limit per test512 megabytes inputstandard input outputstandard ou ...
- 【 BowWow and the Timetable CodeForces - 1204A 】【思维】
题目链接 可以发现 十进制4 对应 二进制100 十进制16 对应 二进制10000 十进制64 对应 二进制1000000 可以发现每多两个零,4的次幂就增加1. 用string读入题目给定的二进制 ...
- 【57.97%】【codeforces Round #380A】Interview with Oleg
time limit per test1 second memory limit per test256 megabytes inputstandard input outputstandard ou ...
- 【34.57%】【codeforces 557D】Vitaly and Cycle
time limit per test1 second memory limit per test256 megabytes inputstandard input outputstandard ou ...
- 【75.28%】【codeforces 764B】Decoding
time limit per test1 second memory limit per test256 megabytes inputstandard input outputstandard ou ...
- 【30.93%】【codeforces 558E】A Simple Task
time limit per test5 seconds memory limit per test512 megabytes inputstandard input outputstandard o ...
- 【77.78%】【codeforces 625C】K-special Tables
time limit per test 2 seconds memory limit per test 256 megabytes input standard input output standa ...
- 【codeforces 760A】Petr and a calendar
time limit per test2 seconds memory limit per test256 megabytes inputstandard input outputstandard o ...
随机推荐
- vue项目在其他电脑运行报错
解决方法1.先删除node_modules文件夹2.$ cnpm cache clean 命令清除掉cache缓存3.cnpm install4.npm run dev
- 每天自动备份MySQL数据库的shell脚本
经常备份数据库是一个好习惯,虽然数据库损坏或数据丢失的概率很低,但一旦发生这种事情,后悔是没用的.一般网站或应用的后台都有备份数据库的功能按钮,但需要去手工执行.我们需要一种安全的,每天自动备份的方法 ...
- jmeter--错误之Not able to find Java executable or version. Please check your Java installation. errorlevel=2
学习jmeter中遇到的问题: 'findstr' 不是内部或外部命令,也不是可运行的程序或批处理文件. Not able to find Java executable or version. Pl ...
- linux中获取系统时间 gettimeofday函数
linux的man页中对gettimeofday函数的说明中,有这样一个说明: $ man gettimeofday DESCRIPTION The functions gettimeof ...
- [React Intl] Use Webpack to Conditionally Include an Intl Polyfill for Older Browsers
Some browsers, such as Safari < 10 & IE < 11, do not support the JavaScript Internationali ...
- java学习笔记之基础语法(二)
1.数组: 概念:同一种类型数据的集合,其实,数组就是一个容器 优点:可以方便的对其进行操作,编号从0开始,方便操作这些元素. 2,数组的格式 元素类型[]数组名=new 元素类型[数组元素个数]: ...
- 对inetd、xinetd与TCP_Wrapper的基本了解
在Linux系统中有一个特殊的守护进程inetd(InterNET services Daemon),它用于Internet标准服务,通常在系统启动时启动.通过命令行可以给出inetd的配置文件,该配 ...
- 关于Altium Designer的BOM,元件清单
在生成BOM列表的时候,要记得调整BOM的表格的宽度,以免显示不全, 还有就是BOM列表一共有 comment栏 ,description栏,designator栏,footprint栏,libref ...
- sprinng in action 第四版第六章中的ValidationMessages.properties不起作用
文件名必须是ValidationMessages.properties,必须放在类的根目录下
- 每日技术总结:filter(),Bscroll
前言: 这是一个vue的电商项目,使用express后端提供数据. 1.filter()函数. 事情是这样的.我从数据库拿到了所有分类数据. 分类有三个等级.父类,子类,孙类这样.但它们都在同一张表里 ...