POJ 1236 Tarjan算法
这道题认真想了想。。
【
题目大意:有N个学校,从每个学校都能从一个单向网络到另外一个学校,两个问题
1:初始至少需要向多少个学校发放软件,使得网络内所有的学校最终都能得到软件。
2:至少需要添加几条边,使任意向一个学校发放软件后,经过若干次传送,网络内所有的学校最终都能得到软件。
解题思路:
首先找连通分量,然后看连通分量的入度为0点的总数,出度为0点的总数,那么问要向多少学校发放软件,就是入度为零的个数,这样才能保证所有点能够找到
然后第二问添加多少条边可以得到使整个图达到一个强连通分量,答案是入度为0的个数和出度为0的个数中最大的
那个,为什么会这样呢,经过我同学的讨论,将这个图的所有子树找出来,然后将一棵子树的叶子结点(出度为0)连到另外一棵子树的根结点上(入度为0),这样将所有的叶子结点和根节点全部消掉之后,就可以得到一整个强连通分量,看最少多少条边,这样就是看叶子结点和根节点哪个多,即出度为0和入度为0哪个多
】(转自http://blog.csdn.net/wangjian8006)
顺便看了看zrt的题解。。
#include <stack>
#include <cstdio>
#include <vector>
#include <algorithm>
using namespace std;
vector <int> v[105];
stack<int> stk;
int low[105],dfn[105],p[105],in[105],out[105],ans=0,jy,cnt=0,N,t=0,anss=0;
bool vis[105];
void tarjan(int x)
{
low[x]=dfn[x]=++cnt,vis[x]=1,stk.push(x);
for(int i=0;i<v[x].size();i++)
if(!dfn[v[x][i]]) tarjan(v[x][i]),low[x]=min(low[x],low[v[x][i]]);
else if(vis[v[x][i]]) low[x]=min(low[x],dfn[v[x][i]]);
if(dfn[x]==low[x]){
int y;t++;
do y=stk.top(),stk.pop(),vis[y]=0,p[y]=t;while(y!=x);
}
}
int main()
{
scanf("%d",&N);
for(int i=1;i<=N;i++)
while(scanf("%d",&jy)&&jy)
v[i].push_back(jy);
for(int i=1;i<=N;i++)if(!dfn[i])tarjan(i);
for(int i=1;i<=N;i++)
for(int j=0;j<v[i].size();j++)
if(p[i]!=p[v[i][j]])
in[p[v[i][j]]]++,out[p[i]]++;
for(int i=1;i<=t;i++){
if(!in[i])ans++;
if(!out[i])anss++;
}
if(t==1)printf("1\n0");
else printf("%d\n%d",ans,max(ans,anss));
}
POJ 1236 Tarjan算法的更多相关文章
- POJ 1470 Tarjan算法
裸的LCA,读入小坑.Tarjan算法大坑,一开始不知道哪儿错了,后来才发现,是vis数组忘了清零了(⊙﹏⊙)b 傻傻的用了邻接矩阵...很慢啊,1100多ms. Closest Common Anc ...
- POJ 1236 tarjan
Network of Schools Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 19613 Accepted: 77 ...
- POJ - 2553 tarjan算法+缩点
题意: 给你n个点,和m条单向边,问你有多少点满足(G)={v∈V|∀w∈V:(v→w)⇒(w→v)}关系,并把这些点输出(要注意的是这个关系中是蕴含关系而不是且(&&)关系) 题解: ...
- Tarjan算法求出强连通分量(包含若干个节点)
[功能] Tarjan算法的用途之一是,求一个有向图G=(V,E)里极大强连通分量.强连通分量是指有向图G里顶点间能互相到达的子图.而如果一个强连通分量已经没有被其它强通分量完全包含的话,那么这个强连 ...
- POJ 1236 Network of Schools(Tarjan缩点)
Network of Schools Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 16806 Accepted: 66 ...
- 【POJ 1330 Nearest Common Ancestors】LCA问题 Tarjan算法
题目链接:http://poj.org/problem?id=1330 题意:给定一个n个节点的有根树,以及树中的两个节点u,v,求u,v的最近公共祖先. 数据范围:n [2, 10000] 思路:从 ...
- POJ 1236 Network of Schools(强连通 Tarjan+缩点)
POJ 1236 Network of Schools(强连通 Tarjan+缩点) ACM 题目地址:POJ 1236 题意: 给定一张有向图,问最少选择几个点能遍历全图,以及最少加入�几条边使得 ...
- POJ 1330 Nearest Common Ancestors(LCA Tarjan算法)
题目链接:http://poj.org/problem?id=1330 题意:给定一个n个节点的有根树,以及树中的两个节点u,v,求u,v的最近公共祖先. 数据范围:n [2, 10000] 思路:从 ...
- poj 2186 Popular Cows 【强连通分量Tarjan算法 + 树问题】
题目地址:http://poj.org/problem?id=2186 Popular Cows Time Limit: 2000MS Memory Limit: 65536K Total Sub ...
随机推荐
- TP调用JS
echo "<script>alert('删除成功');window.location.href='?c=Banner&a=index' </script>& ...
- HDU114 - Piggy-Bank 【完全背包】
在 ACM 能够开展之前,必须准备预算,并获得必要的财力支持.该活动的主要收入来自于 Irreversibly Bound Money (IBM).思路很简单.任何时候,某位 ACM 会员有少量的钱时 ...
- js事件委托或事件代理
起因: 1.这是前端面试的经典题型,要去找工作的小伙伴看看还是有帮助的: 2.其实我一直都没弄明白,写这个一是为了备忘,二是给其他的知其然不知其所以然的小伙伴们以参考: 概述: 那什么叫事件委托呢?它 ...
- 2.1 Java开发工具包
Java专业术语 术语名 缩写 ...
- ISNUMERIC()检测是否为数字
ISNUMERIC ( expression )当输入表达式得数为一个有效的整数.浮点数.money 或 decimal 类型,那么 ISNUMERIC 返回 1:否则返回 0.返回值为 1 确保可以 ...
- hadoop datanode usages方差算法
stdDev 标准差(方差) 阐述及应用 简单来说,标准差是一组数值自平均值分散开来的程度的一种测量观念.一个较大的标准差,代表大部分的数值和其平均值之间差异较大:一个较小的标准差,代表这些数值较接近 ...
- Django——9 博客小案例的实现
Django 博客小案例的实现 主要实现博客的增删改查功能 主页index.html --> 展示添加博客和博客列表的文字,实现页面跳转 添加页add.html --> 输入文章标 ...
- [Cogs14] [网络流24题#1] 飞行员分配方案 [网络流,最大流,二分图匹配]
经典二分图匹配,可以用匈牙利算法,也可以用最大流 代码如下(Dinic): #include <iostream> #include <cstdio> #include < ...
- bcd(Binary-Coded Decimal缩写)
Binary-Coded Decimal,简称BCD,称BCD码或二-十进制代码,亦称二进码十进数.是一种二进制的数字编码形式,用二进制编码的十进制代码.这种编码形式利用了四个位元来储存一个十进制的 ...
- MVC.NET:提供对字体文件.woff的访问
在我们的项目中如果使用到了Bootstrap框架的话,通常都必须要支持对其自带的glyphicons-halflings-regular的font文件的访问. 诸如在MVC.NET中,如果一开始什么设 ...