题目:

Wall

Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 119 Accepted Submission(s): 47
 
Problem Description
Once upon a time there was a greedy King who ordered his chief Architect to build a wall around the King's castle. The King was so greedy, that he would not listen to his Architect's proposals to build a beautiful brick wall with a perfect shape and nice tall towers. Instead, he ordered to build the wall around the whole castle using the least amount of stone and labor, but demanded that the wall should not come closer to the castle than a certain distance. If the King finds that the Architect has used more resources to build the wall than it was absolutely necessary to satisfy those requirements, then the Architect will loose his head. Moreover, he demanded Architect to introduce at once a plan of the wall listing the exact amount of resources that are needed to build the wall.
Your task is to help poor Architect to save his head, by writing a program that will find the minimum possible length of the wall that he could build around the castle to satisfy King's requirements.

The task is somewhat simplified by the fact, that the King's castle has a polygonal shape and is situated on a flat ground. The Architect has already established a Cartesian coordinate system and has precisely measured the coordinates of all castle's vertices in feet.

 
Input
The first line of the input file contains two integer numbers N and L separated by a space. N (3 <= N <= 1000) is the number of vertices in the King's castle, and L (1 <= L <= 1000) is the minimal number of feet that King allows for the wall to come close to the castle.

Next N lines describe coordinates of castle's vertices in a clockwise order. Each line contains two integer numbers Xi and Yi separated by a space (-10000 <= Xi, Yi <= 10000) that represent the coordinates of ith vertex. All vertices are different and the sides of the castle do not intersect anywhere except for vertices.

 
Output
Write to the output file the single number that represents the minimal possible length of the wall in feet that could be built around the castle to satisfy King's requirements. You must present the integer number of feet to the King, because the floating numbers are not invented yet. However, you must round the result in such a way, that it is accurate to 8 inches (1 foot is equal to 12 inches), since the King will not tolerate larger error in the estimates.

This problem contains multiple test cases!

The first line of a multiple input is an integer N, then a blank line followed by N input blocks. Each input block is in the format indicated in the problem description. There is a blank line between input blocks.

The output format consists of N output blocks. There is a blank line between output blocks.

 
Sample Input
1

9 100
200 400
300 400
300 300
400 300
400 400
500 400
500 200
350 200
200 200
 
Sample Output
1628
 
 
Source
Northeastern Europe 2001
 
Recommend
JGShining

题目分析:

求凸包的周长。再求图报的周长前,首先要做的是计算凸包——找到将全部点围起来的最小凸多边形。

对于找到凸包的算法,下面代码用的是graham算法,对这个算法不太熟悉的童鞋能够先看一下:

http://blog.csdn.net/hjd_love_zzt/article/details/44311333

代码例如以下:

/*
* g.cpp
*
* Created on: 2015年3月16日
* Author: Administrator
*/ #include <iostream>
#include <cstdio>
#include <cmath>
#include <algorithm> using namespace std; const double epsi = 1e-8;
const double pi = acos(-1.0);
const int maxn = 1001; struct PPoint{//结构体尽量不要定义成Point这样的,easy和C/C++本身中的变量同名
double x;
double y; PPoint(double _x = 0,double _y = 0):x(_x),y(_y){ } PPoint operator - (const PPoint& op2) const{
return PPoint(x - op2.x,y - op2.y);
} double operator^(const PPoint &op2)const{
return x*op2.y - y*op2.x;
}
}; inline int sign(const double &x){
if(x > epsi){
return 1;
} if(x < -epsi){
return -1;
} return 0;
} inline double sqr(const double &x){
return x*x;
} inline double mul(const PPoint& p0,const PPoint& p1,const PPoint& p2){
return (p1 - p0)^(p2 - p0);
} inline double dis2(const PPoint &p0,const PPoint &p1){
return sqr(p0.x - p1.x) + sqr(p0.y - p1.y);
} inline double dis(const PPoint& p0,const PPoint& p1){
return sqrt(dis2(p0,p1));
} int n;
double l;
PPoint p[maxn];
PPoint convex_hull_p0; inline bool convex_hull_cmp(const PPoint& a,const PPoint& b){
return sign(mul(convex_hull_p0,a,b)>0)|| sign(mul(convex_hull_p0,a,b)) == 0 && dis2(convex_hull_p0,a) < dis2(convex_hull_p0,b);
} /**
* 计算点集a[]的凸包b[]。当中点集a有n个元素
*/
int convex_hull(PPoint* a,int n,PPoint* b){
if(n < 3){//假设顶点数小于3,构不成一个凸包
//输出失败信息
printf("wrong answer ,cause of n smaller than 3\n");
return -1;
} int i;
for(i = 1 ; i < n ; ++i){//遍历点集中的每个点
//寻找最低点(所谓的最低点就是最靠左下角的点)
if(sign(a[i].x - a[0].x) < 0 || (sign(a[i].x - a[0].x) == 0 && sign(a[i].y < a[0].y) < 0 )){
swap(a[i],a[0]);
}
} convex_hull_p0 = a[0];
sort(a,a+n,convex_hull_cmp);//排序 int newn = 2;
b[0] = a[0];
b[1] = a[1]; /**
* 在剩下的点中不断前进,假设当前点在前进方向左側,
* 则将当前点进栈,否则将近期入栈的点出栈.知道当前点在前进方向的左側
*/
for(i = 2 ; i < n ; ++i){
while(newn > 1 && sign(mul(b[newn-1],b[newn-2],a[i])) >= 0){
newn--;
} b[newn++] = a[i];//江当前点进栈
} return newn;//返回栈顶指针
} int main(){
int t;
scanf("%d",&t);
while(t--){
scanf("%d %lf",&n,&l); int i;
for(i = 0 ; i < n ; ++i){
scanf("%lf %lf",&p[i].x,&p[i].y);
} n = convex_hull(p,n,p);
p[n] = p[0]; double ans = 0;
for(i = 0 ; i < n ; ++i){//求凸包的周长
ans += dis(p[i],p[i+1]);
} ans += 2*pi*l;//加上外面围墙的周长 /**
* "."后面的是小数精度控制。这里由于是浮点型。则取零代表不显示小数点(取整)
* .不为零时代表最大小数位数
*/
printf("%.0lf\n",ans); if(t != 0){//每个输出后面都要跟一个换行
printf("\n");
}
} return 0;
}

(hdu step 7.1.7)Wall(求凸包的周长——求将全部点围起来的最小凸多边形的周长)的更多相关文章

  1. (hdu step 7.1.5)Maple trees(凸包的最小半径寻找掩护轮)

    称号: Maple trees Time Limit: 1000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Tot ...

  2. (hdu step 7.1.6)最大三角形(凸包的应用——在n个点中找到3个点,它们所形成的三角形面积最大)

    题目: 最大三角形 Time Limit: 5000/2000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Total Sub ...

  3. poj 3348:Cows(计算几何,求凸包面积)

    Cows Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 6199   Accepted: 2822 Description ...

  4. hdu 1348:Wall(计算几何,求凸包周长)

    Wall Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total Submis ...

  5. poj 1113:Wall(计算几何,求凸包周长)

    Wall Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 28462   Accepted: 9498 Description ...

  6. hdu 1348 Wall(凸包模板题)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1348 Wall Time Limit: 2000/1000 MS (Java/Others)    M ...

  7. POJ 1113 || HDU 1348: wall(凸包问题)

    传送门: POJ:点击打开链接 HDU:点击打开链接 以下是POJ上的题: Wall Time Limit: 1000MS   Memory Limit: 10000K Total Submissio ...

  8. HDU 1392 凸包模板题,求凸包周长

    1.HDU 1392 Surround the Trees 2.题意:就是求凸包周长 3.总结:第一次做计算几何,没办法,还是看了大牛的博客 #include<iostream> #inc ...

  9. POJ 1113 Wall 求凸包的两种方法

    Wall Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 31199   Accepted: 10521 Descriptio ...

随机推荐

  1. SQLServer 里的三种条件判断的用法:Where GroupBy Having

    HAVING 子句对 GROUP BY 子句设置条件的方式与 WHERE 子句和 SELECT 语句交互的方式类似.WHERE 子句搜索条件在进行分组操作之前应用:而 HAVING 搜索条件在进行分组 ...

  2. angular js 公告墙

    <!DOCTYPE html>   <html lang="en">   <head>   <meta charset="UTF ...

  3. Android读写文件

    1.从resource中的raw文件夹中获取文件并读取数据(资源文件只能读不能写) String res = ""; try{ InputStream in = getResour ...

  4. mac 上执行 rm -rf /

    # 很可怕的指令,清空磁盘所有资料,千万不要用 sudo 尝试,吓的小心肝差掉跳出来 rm -rf / 无聊,想执行rm -rf /会怎样,想起没加sudo时对~/download执行提示权限不足,被 ...

  5. 初探CORBA组件化编程

    1.掌握组件化开发的概念,了解CORBA模型及ORB机制:2.掌握CORBA组件编程方法.二.实验内容(一).步骤1.配制环境JDK环境.2.编写编译IDL接口.3.编写编译服务端程序.4.编写编译客 ...

  6. Java中类似单元格之间的计算公式解析,如A1+B3-B4

    package net.riking.util; import javax.script.ScriptEngine; import javax.script.ScriptEngineManager; ...

  7. SQL语句注意得问题

    1/不要使用count(列明)或count(常量)来替代count(*),count(*)是SQL92定义得标准统计行数得语法,跟数据库无关,跟NULL和非NULL无关. 说明:count(*)会统计 ...

  8. 【剑指Offer】42、和为S的两个数字

      题目描述:   输入一个递增排序的数组和一个数字S,在数组中查找两个数,使得他们的和正好是S,如果有多对数字的和等于S,输出两个数的乘积最小的.   输出描述:   对应每个测试案例,输出两个数, ...

  9. 通过分析反汇编还原 C 语言 if…else 结构

    让我们从反汇编的角度去分析并还原 C 语言的 if - else 结构,首先我们不看源代码,我们用 OllyDBG 载入 PE 文件,定位到 main 函数领空,如下图所示. 在图示中,我已经做好了关 ...

  10. centos7安装mwget下载资源,提升下载速度

    1.安装mwget wget http://jaist.dl.sourceforge.net/project/kmphpfm/mwget/0.1/mwget_0.1.0.orig.tar.bz2 ta ...