(hdu step 7.1.7)Wall(求凸包的周长——求将全部点围起来的最小凸多边形的周长)
题目:
Wall |
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) |
Total Submission(s): 119 Accepted Submission(s): 47 |
Problem Description
Once upon a time there was a greedy King who ordered his chief Architect to build a wall around the King's castle. The King was so greedy, that he would not listen to his Architect's proposals to build a beautiful brick wall with a perfect shape and nice tall towers. Instead, he ordered to build the wall around the whole castle using the least amount of stone and labor, but demanded that the wall should not come closer to the castle than a certain distance. If the King finds that the Architect has used more resources to build the wall than it was absolutely necessary to satisfy those requirements, then the Architect will loose his head. Moreover, he demanded Architect to introduce at once a plan of the wall listing the exact amount of resources that are needed to build the wall.
Your task is to help poor Architect to save his head, by writing a program that will find the minimum possible length of the wall that he could build around the castle to satisfy King's requirements. The task is somewhat simplified by the fact, that the King's castle has a polygonal shape and is situated on a flat ground. The Architect has already established a Cartesian coordinate system and has precisely measured the coordinates of all castle's vertices in feet. |
Input
The first line of the input file contains two integer numbers N and L separated by a space. N (3 <= N <= 1000) is the number of vertices in the King's castle, and L (1 <= L <= 1000) is the minimal number of feet that King allows for the wall to come close to the castle.
Next N lines describe coordinates of castle's vertices in a clockwise order. Each line contains two integer numbers Xi and Yi separated by a space (-10000 <= Xi, Yi <= 10000) that represent the coordinates of ith vertex. All vertices are different and the sides of the castle do not intersect anywhere except for vertices. |
Output
Write to the output file the single number that represents the minimal possible length of the wall in feet that could be built around the castle to satisfy King's requirements. You must present the integer number of feet to the King, because the floating numbers are not invented yet. However, you must round the result in such a way, that it is accurate to 8 inches (1 foot is equal to 12 inches), since the King will not tolerate larger error in the estimates.
This problem contains multiple test cases! The first line of a multiple input is an integer N, then a blank line followed by N input blocks. Each input block is in the format indicated in the problem description. There is a blank line between input blocks. The output format consists of N output blocks. There is a blank line between output blocks. |
Sample Input
1 9 100 |
Sample Output
1628 |
Source
Northeastern Europe 2001
|
Recommend
JGShining
|
题目分析:
求凸包的周长。再求图报的周长前,首先要做的是计算凸包——找到将全部点围起来的最小凸多边形。
对于找到凸包的算法,下面代码用的是graham算法,对这个算法不太熟悉的童鞋能够先看一下:
http://blog.csdn.net/hjd_love_zzt/article/details/44311333
代码例如以下:
/*
* g.cpp
*
* Created on: 2015年3月16日
* Author: Administrator
*/ #include <iostream>
#include <cstdio>
#include <cmath>
#include <algorithm> using namespace std; const double epsi = 1e-8;
const double pi = acos(-1.0);
const int maxn = 1001; struct PPoint{//结构体尽量不要定义成Point这样的,easy和C/C++本身中的变量同名
double x;
double y; PPoint(double _x = 0,double _y = 0):x(_x),y(_y){ } PPoint operator - (const PPoint& op2) const{
return PPoint(x - op2.x,y - op2.y);
} double operator^(const PPoint &op2)const{
return x*op2.y - y*op2.x;
}
}; inline int sign(const double &x){
if(x > epsi){
return 1;
} if(x < -epsi){
return -1;
} return 0;
} inline double sqr(const double &x){
return x*x;
} inline double mul(const PPoint& p0,const PPoint& p1,const PPoint& p2){
return (p1 - p0)^(p2 - p0);
} inline double dis2(const PPoint &p0,const PPoint &p1){
return sqr(p0.x - p1.x) + sqr(p0.y - p1.y);
} inline double dis(const PPoint& p0,const PPoint& p1){
return sqrt(dis2(p0,p1));
} int n;
double l;
PPoint p[maxn];
PPoint convex_hull_p0; inline bool convex_hull_cmp(const PPoint& a,const PPoint& b){
return sign(mul(convex_hull_p0,a,b)>0)|| sign(mul(convex_hull_p0,a,b)) == 0 && dis2(convex_hull_p0,a) < dis2(convex_hull_p0,b);
} /**
* 计算点集a[]的凸包b[]。当中点集a有n个元素
*/
int convex_hull(PPoint* a,int n,PPoint* b){
if(n < 3){//假设顶点数小于3,构不成一个凸包
//输出失败信息
printf("wrong answer ,cause of n smaller than 3\n");
return -1;
} int i;
for(i = 1 ; i < n ; ++i){//遍历点集中的每个点
//寻找最低点(所谓的最低点就是最靠左下角的点)
if(sign(a[i].x - a[0].x) < 0 || (sign(a[i].x - a[0].x) == 0 && sign(a[i].y < a[0].y) < 0 )){
swap(a[i],a[0]);
}
} convex_hull_p0 = a[0];
sort(a,a+n,convex_hull_cmp);//排序 int newn = 2;
b[0] = a[0];
b[1] = a[1]; /**
* 在剩下的点中不断前进,假设当前点在前进方向左側,
* 则将当前点进栈,否则将近期入栈的点出栈.知道当前点在前进方向的左側
*/
for(i = 2 ; i < n ; ++i){
while(newn > 1 && sign(mul(b[newn-1],b[newn-2],a[i])) >= 0){
newn--;
} b[newn++] = a[i];//江当前点进栈
} return newn;//返回栈顶指针
} int main(){
int t;
scanf("%d",&t);
while(t--){
scanf("%d %lf",&n,&l); int i;
for(i = 0 ; i < n ; ++i){
scanf("%lf %lf",&p[i].x,&p[i].y);
} n = convex_hull(p,n,p);
p[n] = p[0]; double ans = 0;
for(i = 0 ; i < n ; ++i){//求凸包的周长
ans += dis(p[i],p[i+1]);
} ans += 2*pi*l;//加上外面围墙的周长 /**
* "."后面的是小数精度控制。这里由于是浮点型。则取零代表不显示小数点(取整)
* .不为零时代表最大小数位数
*/
printf("%.0lf\n",ans); if(t != 0){//每个输出后面都要跟一个换行
printf("\n");
}
} return 0;
}
(hdu step 7.1.7)Wall(求凸包的周长——求将全部点围起来的最小凸多边形的周长)的更多相关文章
- (hdu step 7.1.5)Maple trees(凸包的最小半径寻找掩护轮)
称号: Maple trees Time Limit: 1000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Tot ...
- (hdu step 7.1.6)最大三角形(凸包的应用——在n个点中找到3个点,它们所形成的三角形面积最大)
题目: 最大三角形 Time Limit: 5000/2000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Total Sub ...
- poj 3348:Cows(计算几何,求凸包面积)
Cows Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 6199 Accepted: 2822 Description ...
- hdu 1348:Wall(计算几何,求凸包周长)
Wall Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Total Submis ...
- poj 1113:Wall(计算几何,求凸包周长)
Wall Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 28462 Accepted: 9498 Description ...
- hdu 1348 Wall(凸包模板题)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1348 Wall Time Limit: 2000/1000 MS (Java/Others) M ...
- POJ 1113 || HDU 1348: wall(凸包问题)
传送门: POJ:点击打开链接 HDU:点击打开链接 以下是POJ上的题: Wall Time Limit: 1000MS Memory Limit: 10000K Total Submissio ...
- HDU 1392 凸包模板题,求凸包周长
1.HDU 1392 Surround the Trees 2.题意:就是求凸包周长 3.总结:第一次做计算几何,没办法,还是看了大牛的博客 #include<iostream> #inc ...
- POJ 1113 Wall 求凸包的两种方法
Wall Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 31199 Accepted: 10521 Descriptio ...
随机推荐
- ROS-TF-新建坐标系
前言:在前面的试验中,我们分别有wolrd,turtle1和turtle2三个坐标系,并且world是turtle1和turtle2的父坐标系.现在我们来新建一个自定义坐标系,让turtle2跟着新的 ...
- indeed 5.13 第二次网测
题目描述,我找不见了,大概写一下想法和代码吧. 1. 没有看 2. 由于数据范围很小,就是简单的枚举,求全排列,然后更新答案. #include<bits/stdc++.h> #defin ...
- @PathVariable注解的使用和@Requestparam
一. @PathVariable @PathVariable这是一个路径映射格式的书写方式注解,在类映射路径的后加上/{对应方法参数中属性@PathVariable("code") ...
- 在PL/SQL中使用游标、动态sql和绑定变量的小例子
需求:查询并输出30号部门的雇员信息 方式一:使用 loop...fetch SET serveroutput ON; DECLARE CURSOR c_emp IS ; v_emp emp%rowt ...
- 算法之dfs篇
dfs算法是深度搜索算法.从某一节点开始遍历直至到路径底部,如果不是所寻找的,则回溯到上个节点后,再遍历其他路径.不断重复这个过程.一般此过程消耗很大,需要一些优化才能保持算法的高效. hdu1010 ...
- 《Java编程思想》学习笔记(一)
1——面向对象和JVM基础 1.java中的4种访问制权限: (1).public:最大访问控制权限,对所有的类都可见. (2).protect:同一包可见,不在同一个包的所有子类也可见. (3). ...
- session 存入redis 或 memcache 的方法
Session简介 session,中文经常翻译为会话,其本来的含义是 指有始有终的一系列动作/消息,比如打电话时从拿起电话拨号到挂断电话这中间的一系列过程可以称之为一个session.有时候我们 ...
- Boost-QT兼容问题:#define FUSION_HASH #
使用原始的MSVC10+QT48很长时间,需要把PCL升级到新的版本,不再使用自行编译的PCL1.7.2版本. 在使用MSVC2012的时候,使用MSVC12-的PCL1.8.0版本,出现了一个不大不 ...
- html 图片翻转
var Lb = false; var Ub = false; function rotate(obj) { if (obj == "L") { if (Lb == false) ...
- Hadoop分布式文件系统架构部署
原创作品,允许转载,转载时请务必以超链接形式标明文章 原始出处 .作者信息和本声明.否则将追究法律责任.http://wgkgood.blog.51cto.com/1192594/1332340 前言 ...