2510: 弱题

Time Limit: 10 Sec  Memory Limit: 128 MB
Submit: 419  Solved: 226
[Submit][Status][Discuss]

Description

M个球,一开始每个球均有一个初始标号,标号范围为1~N且为整数,标号为i的球有ai个,并保证Σai = M
每次操作等概率取出一个球(即取出每个球的概率均为1/M),若这个球标号为kk < N),则将它重新标号为k + 1;若这个球标号为N,则将其重标号为1。(取出球后并不将其丢弃)
现在你需要求出,经过K次这样的操作后,每个标号的球的期望个数。
 
 

Input

第1行包含三个正整数NMK,表示了标号与球的个数以及操作次数。
第2行包含N非负整数ai,表示初始标号为i的球有ai个。
 
 

Output

应包含N行,第i行为标号为i的球的期望个数,四舍五入保留3位小数。
 
 

Sample Input

2 3 2
3 0

Sample Output

1.667
1.333

HINT

【样例说明】

第1次操作后,由于标号为2球个数为0,所以必然是一个标号为1的球变为标号为2的球。所以有2个标号为1的球,有1个标号为2的球。

第2次操作后,有1/3的概率标号为2的球变为标号为1的球(此时标号为1的球有3个),有2/3的概率标号为1的球变为标号为2的球(此时标号为1的球有1个),所以标号为1的球的期望个数为1/3*3+2/3*1 = 5/3。同理可求出标号为2的球期望个数为4/3。

【数据规模与约定】

对于10%的数据,N ≤ 5, M ≤ 5, K ≤ 10;

对于20%的数据,N ≤ 20, M ≤ 50, K ≤ 20;

对于30%的数据,N ≤ 100, M ≤ 100, K ≤ 100;

对于40%的数据,M ≤ 1000, K ≤ 1000;

对于100%的数据,N ≤ 1000, M ≤ 100,000,000, K ≤ 2,147,483,647。

题解

首先看题目我们可以猜到这是个概率DP...然后肯定能想到最朴素的做法 ($O(n)$转移期望值然后跑$k$次)

但是紧接着我们发现 $k$ 的范围极大...这时我们可以考虑矩阵乘法优化DP. 推出来的矩阵大概长这样:

\[\begin{bmatrix}
1-\frac{1}{m} & 0 & 0 & \dots & \frac{1}{m}\\
\frac{1}{m} & 1-\frac{1}{m} & 0 & \dots & 0\\
0 & \frac{1}{m} & 1-\frac{1}{m} & \dots & 0\\
\vdots & \vdots & \vdots & \ddots & \vdots\\
0 & 0 & 0 & \frac{1}{m} & 1-\frac{1}{m}
\end{bmatrix}\]

然后矩阵快速幂跑到 $O(n^3log(k))$ 的复杂度了233

然而我们又发现 $n$ 的范围 $O(n^3)$ 跑不过去...

观察转移矩阵, 我们发现这其实是个循环矩阵, 乘法可以转化成类似卷积的形式, 然后 $O(n^2)$ 求卷积就可以降到 $O(n^2log(n))$ 复杂度了OwO

参考代码

GitHub

 #include <cstdio>
#include <cstring>
#include <cstdlib>
#include <iostream>
#include <algorithm> const int MAXN=;
const int MAXK=; int n;
int m;
int k;
double x[MAXN];
double ans[MAXN];
double a[MAXN]/*[MAXN]*/;
double b[MAXN]/*[MAXN]*/; int main(){
scanf("%d%d%d",&n,&m,&k);
for(int i=;i<=n;i++){
scanf("%lf",ans+i);
}
a[]=1.0-1.0/m;
a[n]=1.0/m;
while(k>){
if((k&)==){
memcpy(x,ans,sizeof(ans));
for(int i=;i<=n;i++){
ans[i]=;
for(int j=;j<=n;j++){
ans[i]+=x[j]*a[((j-i+n)%n)+];
}
}
}
memset(b,,sizeof(b));
for(int i=;i<=n;i++){
for(int j=;j<=n;j++){
b[i]+=a[((i-j+n)%n)+]*a[j];
}
}
memcpy(a,b,sizeof(b));
k>>=;
}
for(int i=;i<=n;i++){
printf("%.3lf\n",ans[i]);
}
return ;
}

Backup

[BZOJ 2510]弱题的更多相关文章

  1. bzoj 2510: 弱题 循环矩阵

    2510: 弱题 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 124  Solved: 61[Submit][Status][Discuss] De ...

  2. BZOJ 2510: 弱题( 矩阵快速幂 )

    每进行一次, 编号为x的数对x, 和(x+1)%N都有贡献 用矩阵快速幂, O(N3logK). 注意到是循环矩阵, 可以把矩阵乘法的复杂度降到O(N2). 所以总复杂度就是O(N2logK) --- ...

  3. bzoj 2510 弱题 矩阵乘

    看题就像矩阵乘 但是1000的数据无从下手 打表发现每一行的数都是一样的,只不过是错位的,好像叫什么循环矩阵 于是都可以转化为一行的,O(n3)->O(n2)*logk #include< ...

  4. bzoj 2510: 弱题 概率期望dp+循环矩阵

    题目: Description 有M个球,一开始每个球均有一个初始标号,标号范围为1-N且为整数,标号为i的球有ai个,并保证Σai = M. 每次操作等概率取出一个球(即取出每个球的概率均为1/M) ...

  5. 【循环矩阵乘优化DP】BZOJ 2510 弱题

    题目大意 有 \(M\) 个球,一开始每个球均有一个初始标号,标号范围为 \(1\) - \(N\) 且为整数,标号为 \(i\) 的球有 \(a_i\) 个,并保证 \(\sum a_i = M\) ...

  6. 【BZOJ 2510】 2510: 弱题 (矩阵乘法、循环矩阵的矩阵乘法)

    2510: 弱题 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 374  Solved: 196 Description 有M个球,一开始每个球均有一 ...

  7. bzoj 前100题计划

    bzoj前100题计划 xz布置的巨大的坑.. 有空填题解... 1002 轮状病毒 用python手动matrixtree打表. #include<bits/stdc++.h> #def ...

  8. 【BZOJ2510】弱题 期望DP+循环矩阵乘法

    [BZOJ2510]弱题 Description 有M个球,一开始每个球均有一个初始标号,标号范围为1-N且为整数,标号为i的球有ai个,并保证Σai = M. 每次操作等概率取出一个球(即取出每个球 ...

  9. 「BZOJ2510」弱题

    「BZOJ2510」弱题 这题的dp式子应该挺好写的,我是不会告诉你我开始写错了的,设f[i][j]为操作前i次,取到j小球的期望个数(第一维这么大显然不可做),那么 f[i][j]=f[i-1][j ...

随机推荐

  1. 发布 .Net Core WebAPI 应用程序到 Docker

    目录 1. 创建 .net core webapi 项目 2. 编译应用 3. 创建 Dockerfile 文件 4. 上传文件到服务器 5. 生成Docker Image 6. 在Docker Co ...

  2. nodejs学习笔记四(模块化、在npm上发布自己的模块)

    模块化:      1.系统模块:  http.querystring.url      2.自定义模块      3.包管理器   [系统模块]   Assert      断言:肯定确定会出现的情 ...

  3. js中进行金额计算

    js中进行金额计算parseFloat   在js中进行以元为单位进行金额计算时 使用parseFloat会产生精度问题var price = 10.99;var quantity = 7;var n ...

  4. Bean的自动装配及作用域

    1.XML配置里的Bean自动装配 Spring IOC 容器可以自动装配 Bean,需要做的仅仅是在 <bean> 的 autowire 属性里指定自动装配的模式.自动装配方式有: by ...

  5. 51NOD1847:奇怪的数学题

    传送门 Sol 设 \(f(d)\) 表示 \(d\) 所有约数中第二大的,\(low_d\) 表示 \(d\) 的最小质因子 \[f(d)=\frac{d}{low_d}\] 那么 \[\sum_{ ...

  6. BZOJ1103 [POI2007]大都市

    Description 在经济全球化浪潮的影响下,习惯于漫步在清晨的乡间小路的邮递员Blue Mary也开始骑着摩托车传递邮件了. 不过,她经常回忆起以前在乡间漫步的情景.昔日,乡下有依次编号为1.. ...

  7. JS实现图片放大镜

    将一个小图放置在一个小盒子里,当鼠标在小盒子里移动时,出现一个移动块,右侧出现一个大盒子,显示出小盒子中移动块所在区域的等比例放大的图片内容.需要实现的效果如下: 基本实现思路为:右侧大盒子为一个可视 ...

  8. mqtt server搭建和web中使用js-sdk订阅发布消息

    1.mqtt server搭建(From:https://www.cnblogs.com/huhongy/p/7929299.html) window安装MQTT服务器,我这里下载了一个apache- ...

  9. drupal7 获取网站名称

    $site_name=variable_get('site_name', 'Drupal');

  10. drupal读取mysql的longblob字段

    unserialize($event->variables)