bzoj 4176 Lucas的数论
bzoj 4176 Lucas的数论
- 和约数个数和那题差不多.只不过那个题是多组询问,这题只询问一次,并且 \(n\) 开到了 \(10^9\).
\sum_{i=1}^N \sum_{j=1}^N f(ij)&=
\sum_{i=1}^N \sum_{j=1}^N \sum_{x|i} \sum_{y|j}[gcd(x,y)=1]\\&=
\sum_{i=1}^N \sum_{j=1}^N \sum_{x|i} \sum_{y|j} \sum_{d|gcd(x,y)}\mu(d)\\&=
\sum_{d=1}^N \mu(d)\sum_{x=1}^{\lfloor \frac N d \rfloor} \sum_{y=1}^{\lfloor \frac M d \rfloor}\lfloor \frac {N}{dx} \rfloor \lfloor \frac {N}{dy} \rfloor\\&=
\sum_{d=1}^N \mu(d)\cdot \sum_{x=1}^{\lfloor \frac N d \rfloor}\lfloor \frac {N}{dx} \rfloor\cdot \sum_{y=1}^{\lfloor \frac N d \rfloor}\lfloor \frac {N}{dy} \rfloor.
\end{align*}
\]
- 记 \(f'(n)=\sum_{i=1}^n \lfloor \frac n i \rfloor\).
- 则答案为
\]
- \(N\) 是 \(10^9\) 级别,所以用杜教筛求 \(\mu\) 的前缀和.然后套两个整除分块,外层算答案,里层算 \(f'\) 即可.
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
inline int read()
{
int out=0,fh=1;
char jp=getchar();
while ((jp>'9'||jp<'0')&&jp!='-')
jp=getchar();
if (jp=='-')
fh=-1,jp=getchar();
while (jp>='0'&&jp<='9')
out=out*10+jp-'0',jp=getchar();
return out*fh;
}
const int P=1e9+7;
const int inv2=(P+1)>>1;
inline int add(int a,int b)
{
return (a + b) % P;
}
inline int mul(int a,int b)
{
return 1LL * a * b % P;
}
inline int sub(int a,int b)
{
return add(a,P-b);
}
const int MAXN=3e6+10;
int n,ans=0;
int f[MAXN],prime[MAXN],cnt=0,mu[MAXN],ism[MAXN],summu[MAXN];
int calc_F(int i)
{
int res = 0;
for(int l=1,r; l<=i; l=r+1)
{
r = i/(i/l);
res = add(res,mul(r-l+1,(i/l)));
}
return res;
}
void init(int N)
{
ism[1] = 1;
mu[1] = 1;
for(int i=2; i<=N; ++i)
{
if(!ism[i])
{
prime[++cnt] = i;
mu[i] = -1;
}
for(int j=1; j<=cnt; ++j)
{
ll num = i * prime[j];
if(num > N)
break;
ism[num] = 1;
if(i % prime[j] == 0)
break;
else
mu[num] = -mu[i];
}
}
for(int i=1; i<=N; ++i)
summu[i] = add(summu[i-1],P+mu[i]);
}
int AP(int x)
{
return mul(mul(x,x+1),inv2);
}
map<int,int> mp;
const int sqN=31200;
int calc(int x)
{
if(x<=sqN)
return summu[x];
if(mp.find(x)!=mp.end())
return mp[x];
int res=1;
for(int l=2,r;l<=x;l=r+1)
{
r=x/(x/l);
int tmp=mul(r-l+1,calc(x/l));
res=add(res,P-tmp);
}
return mp[x]=res;
}
void solve()
{
init(sqN);
for(int l=1,r;l<=n;l=r+1)
{
r=n/(n/l);
int tmp=add(calc(r),P-calc(l-1));
tmp=mul(tmp,mul(calc_F(n/l),calc_F(n/l)));
ans=add(tmp,ans);
}
cout<<ans<<endl;
}
int main()
{
freopen("math.in","r",stdin);
freopen("math.out","w",stdout);
n=read();
solve();
return 0;
}
bzoj 4176 Lucas的数论的更多相关文章
- Mobius反演与积性函数前缀和演学习笔记 BZOJ 4176 Lucas的数论 SDOI 2015 约数个数和
下文中所有讨论都在数论函数范围内开展. 数论函数指的是定义域为正整数域, 且值域为复数域的函数. 数论意义下的和式处理技巧 因子 \[ \sum_{d | n} a_d = \sum_{d | n} ...
- BZOJ 4176: Lucas的数论 [杜教筛]
4176: Lucas的数论 题意:求\(\sum_{i=1}^n \sum_{j=1}^n \sigma_0(ij)\) \(n \le 10^9\) 代入\(\sigma_0(nm)=\sum_{ ...
- bzoj 4176: Lucas的数论 -- 杜教筛,莫比乌斯反演
4176: Lucas的数论 Time Limit: 30 Sec Memory Limit: 256 MB Description 去年的Lucas非常喜欢数论题,但是一年以后的Lucas却不那么 ...
- ●BZOJ 4176 Lucas的数论
题链: http://www.lydsy.com/JudgeOnline/problem.php?id=4176 题解: 莫比乌斯反演,杜教筛 首先有这么一个结论: 令d(n)表示n的约数的个数(就是 ...
- 【刷题】BZOJ 4176 Lucas的数论
Description 去年的Lucas非常喜欢数论题,但是一年以后的Lucas却不那么喜欢了. 在整理以前的试题时,发现了这样一道题目"求Sigma(f(i)),其中1<=i< ...
- [bzoj 4176] Lucas的数论 (杜教筛 + 莫比乌斯反演)
题面 设d(x)d(x)d(x)为xxx的约数个数,给定NNN,求 ∑i=1N∑j=1Nd(ij)\sum^{N}_{i=1}\sum^{N}_{j=1} d(ij)i=1∑Nj=1∑Nd(ij) ...
- BZOJ 4176 Lucas的数论 莫比乌斯反演+杜教筛
题意概述:求,n<=10^9,其中d(n)表示n的约数个数. 分析: 首先想要快速计算上面的柿子就要先把d(ij)表示出来,有个神奇的结论: 证明:当且仅当a,b没有相同的质因数的时候我们统计其 ...
- bzoj 4176: Lucas的数论【莫比乌斯反演+杜教筛】
首先由这样一个结论: \[ d(ij)=\sum_{p|i}\sum_{q|j}[gcd(p,q)==1] \] 然后推反演公式: \[ \sum_{i=1}^{n}\sum_{j=1}^{n}\su ...
- Lucas的数论题解
Lucas的数论 reference 题目在这里> < Pre 数论分块 默认向下取整时. 形如\(\sum\limits_{i=1}^n f\left( \frac{n}{i}\righ ...
随机推荐
- Django学习笔记之form组件的局部钩子和全局钩子
本文通过注册页面的form组件,查看其中使用的全局钩子和局部钩子. # Create your views here. class RegForm(forms.Form): username = fo ...
- poj3318 Matrix Multiplication
poj3318 Matrix Multiplication 题意:给定$n*n(n<=500)$的矩阵$A,B,C$,如果$A*B==C$,输出“YES”,否则为“NO”:多组数据,$O(n^{ ...
- 20145105 《Java程序设计》第5周学习总结
20145105 <Java程序设计>第5周学习总结 教材学习内容总结 第八章 异常处理 一.语法与继承架构 (一)使用try.catch 执行流程 尝试执行try区块中程序代码 如果出现 ...
- 20145122 《Java程序设计》第4周学习总结
教材学习内容总结 第六章 1.在java中,子类只能继承一个父类. 2.在java中,继承时使用extends关键字,private成员也会被继承. 3.检查多态语法逻辑是否正确,方式是从=号右边往左 ...
- 20145333《网络对抗》Exp2 后门原理与实践
20145333<网络对抗>Exp2 后门原理与实践 1.基础问题回答 (1)例举你能想到的一个后门进入到你系统中的可能方式? 通过邮件发送,邮箱里经常受到一些陌生人发来的链接. 误入了一 ...
- 20145315 《Java程序设计》第四周学习总结
20145315 <Java程序设计>第四周学习总结 教材学习内容总结 第六章 继承与多态 6.1何谓继承 6.1.1继承共同行为 把相同的程序代码提升为父类 private String ...
- Access规格
属性 最大值 Microsoft Access 数据库 (.mdb) 文件大小 2G 字节减去系统对象所需的空间. 数据库中的对象个数 32,768 模块(包括“内含模块”属性为“是”的窗体和报表) ...
- ubuntu 16.04下更换源和pip源【转】
本文转载自:https://blog.csdn.net/weixin_41500849/article/details/80246221 写在前面的话 本文主要内容是更换系统源为清华大学源,更换pyt ...
- AOP Schema配置
AOP(Aspect-Oriented Programming,面向切面编程),可以说是OOP(Object-Oriented Programing,面向对象编程)的补充和完善.OOP引入封装.继承和 ...
- XML_CPP_资料
1.TinyXML解析xml文档 - zhoubl668的专栏:远帆,梦之帆! - 博客频道 - CSDN.NET.html http://blog.csdn.net/zhoubl668/articl ...