·问题描述·

  有一个密码箱,0到n-1中的某些数是它的密码。且满足:如果a和b都是它的密码,那么(a+b)%n也是它的密码。某人试了k次密码,前k-1次都失败了,最后一次成功。

  问:该密码箱最多有多少个密码?

·输入格式·

  输入第一行两个整数分别表示n,k。

  第二行为k个用空格隔开的非负整数,表示每次试的密码。(数据保证存在合法解)

·输出格式·

  输出一行一个数,表示结果。

·输入样例·

42 5

28 31 10 38 24

·输出样例·

14

·数据范围·

对于100%的数据:1<=k<=250000,k<=n<=10^14。

Solution:

  本题考察数学。由题意可知,若x为密码则(x+x)%n为密码,则p*x%n(0<p<n)也为密码。而对于p*x%n=q,等价于p*x-n*c=q。

  由引理:a*x+b*y=c(均为整数),有整数解的充要条件是gcd(a,b)|c。证明很容易:不妨设a=p*gcd(a,b),b=q*gcd(a,b) --> a*x+b*y=(p+q)*gcd(a,b)=c,显然要有整数解,则gcd(a,b)|c。

  回到本题的条件:p*x-n*c=q。有解则必定满足gcd(x,n)|q,所以必定有p*x-n*c=gcd(x,n)成立,等价于p*x%n=gcd(x,n),则gcd(x,n)一定为一个密码。类似的,对于不同的密码x和y,存在(p*x+q*y)%n为密码,由引理必定存在p*x+q*y=gcd(x,y),与单个x是密码同理gcd(x,y)一定是密码。

  而要使得密码最多,由x是密码则p*x%n(0<p<n)为密码可知,当x为最小时,密码最多有n/x个。

  具体实现时,我们先求出a[k]=gcd(a[k],n),再使a[i]=gcd(a[i],a[k]),然后从新的a[k]中删去所有是a[i]因子的因子,最后输出答案就是n除以没被删的最小的因子。

代码:

 /*数学一本通上的例题——by 520*/
#include<bits/stdc++.h>
#define il inline
#define ll long long
using namespace std;
ll n,k,tot,a[],q[],p[],cnt=;
il ll gi(){
ll a=;char x=getchar();bool f=;
while((x<''||x>'')&&x!='-')x=getchar();
if(x=='-')x=getchar(),f=;
while(x>=''&&x<='')a=a*+x-,x=getchar();
return f?-a:a;
}
il ll gcd(ll a,ll b){return b?gcd(b,a%b):a;}
int main()
{
freopen("strongbox.in","r",stdin);
freopen("strongbox.out","w",stdout);
n=gi(),k=gi();
for(int i=;i<=k;i++)a[i]=gi();
a[k]=gcd(a[k],n);
for(int i=;i<k;i++)a[i]=gcd(a[k],a[i]);
for(ll i=;i*i<=a[k];i++)
if(a[k]%i==){
q[++tot]=i;
if(i*i!=a[k])q[++tot]=a[k]/i;
}
sort(q+,q+tot+);
for(int i=;i<k;i++)p[lower_bound(q+,q+tot+,a[i])-q]=;
for(int i=;i<=tot;i++)
if(p[i])
for(int j=;j<i;j++)
if(q[i]%q[j]==)p[j]=;
while(p[cnt])cnt++;
cout<<n/q[cnt];
return ;
}

[poi2011]bzoj 2277 —— strongbox·[洛谷3518]的更多相关文章

  1. [bzoj] 3263 陌上花开 洛谷 P3810 三维偏序|| CDQ分治 && CDQ分治讲解

    原题 定义一个点比另一个点大为当且仅当这个点的三个值分别大于等于另一个点的三个值.每比一个点大就为加一等级,求每个等级的点的数量. 显然的三维偏序问题,CDQ的板子题. CDQ分治: CDQ分治是一种 ...

  2. BZOJ 2277 strongbox (gcd)

    题意 有一个密码箱,0到n-1中的某些整数是它的密码. 且满足,如果a和b都是它的密码,那么(a+b)%n也是它的密码(a,b可以相等) 某人试了k次密码,前k-1次都失败了,最后一次成功了. 问:该 ...

  3. 「洛谷3338」「ZJOI2014」力【FFT】

    题目链接 [BZOJ] [洛谷] 题解 首先我们需要对这个式子进行化简,否则对着这么大一坨东西只能暴力... \[F_i=\sum_{j<i} \frac{q_iq_j}{(i-j)^2}-\s ...

  4. BZOJ2120/洛谷P1903 [国家集训队] 数颜色 [带修改莫队]

    BZOJ传送门:洛谷传送门 数颜色 题目描述 墨墨购买了一套N支彩色画笔(其中有些颜色可能相同),摆成一排,你需要回答墨墨的提问.墨墨会向你发布如下指令: 1. Q L R代表询问你从第L支画笔到第R ...

  5. BZOJ2212或洛谷3521 [POI2011]ROT-Tree Rotations

    BZOJ原题链接 洛谷原题链接 线段树合并裸题. 因为交换子树只会对子树内部的逆序对产生影响,所以我们计算交换前的逆序对个数和交换后的个数,取\(\min\)即可. 对每个叶子节点建一棵动态开点线段树 ...

  6. 洛谷 P3307: bzoj 3202: [SDOI2013] 项链

    题目传送门:洛谷P3307.这题在bzoj上是权限题. 题意简述: 这题分为两个部分: ① 有一些珠子,每个珠子可以看成一个无序三元组.三元组要满足三个数都在$1$到$m$之间,并且三个数互质,两个珠 ...

  7. bzoj 4816: 洛谷 P3704: [SDOI2017]数字表格

    洛谷很早以前就写过了,今天交到bzoj发现TLE了. 检查了一下发现自己复杂度是错的. 题目传送门:洛谷P3704. 题意简述: 求 \(\prod_{i=1}^{N}\prod_{j=1}^{M}F ...

  8. bzoj 1014: 洛谷 P4036: [JSOI2008]火星人

    题目传送门:洛谷P4036. 题意简述: 有一个字符串,支持插入字符,修改字符. 每次需要查询两个后缀的LCP长度. 最终字符串长度\(\le 100,\!000\),修改和询问的总个数\(\le 1 ...

  9. [BZOJ 3039&洛谷P4147]玉蟾宫 题解(单调栈)

    [BZOJ 3039&洛谷P4147]玉蟾宫 Description 有一天,小猫rainbow和freda来到了湘西张家界的天门山玉蟾宫,玉蟾宫宫主蓝兔盛情地款待了它们,并赐予它们一片土地. ...

随机推荐

  1. [agc004D]Teleporter

    Description 传送门 Solution 依题意我们可以知道,以2-n为出发点的边和1号节点会构成一课树(不然2-n号节点无法都达到首都). 为了让2-n号节点中,离1号节点的距离<k的 ...

  2. 1130: [POI2008]POD Subdivision of Kingdom

    1130: [POI2008]POD Subdivision of Kingdom https://lydsy.com/JudgeOnline/problem.php?id=1130 分析: 有效状态 ...

  3. 杂谈001:晨曦Dawn的重新连接

    ------------吾亦无他,唯手熟尔,谦卑若愚,好学若饥------------- 摘要: 我是晨曦,好久没有关注过我的博客了,整天都在乱糟糟的忙,叙述一下我消失的这段时间,然后我准备做几个专题 ...

  4. 在docker中执行linux shell命令

    在docker中执行shell命令,需要在命令前增加sh -c,例如: docker run ubuntu sh -c 'cat /data/a.txt > b.txt' 否则,指令无法被正常解 ...

  5. mysql学习----支持Emoji表情

    但发现了一个问题,iPhone上有Emoji表情,插入Mysql时失败了,报如下异常: java.sql.SQLException: Incorrect string value: '\xF0\x9F ...

  6. 帮你理解学习lambda式

    概要     窗前明月光,疑是地上霜,举头望明月,低头思故乡.别误会这是开头诗与以下文章没任何关系. 今天我想给大家说道说道 C# lambda表达式,不废话,下面开始说道! lambda lambd ...

  7. Spring框架 之IOC容器 和AOP详解

    主要分析点: 一.Spring开源框架的简介  二.Spring下IOC容器和DI(依赖注入Dependency injection) 三.Spring下面向切面编程(AOP)和事务管理配置  一.S ...

  8. 常用JDBC数据库驱动包和类名

    MySQL数据库: 1)驱动包:https://mvnrepository.com/artifact/mysql/mysql-connector-java(下载路径) 2)驱动类名:com.mysql ...

  9. 洛谷【P1057】传球游戏

    https://www.luogu.org/problemnew/show/P1057 题目描述 在体育课上, 老师带着同学们一起做传球游戏. 游戏规则是这样的: n 个同学站成一个圆圈, 其中的一个 ...

  10. Python数据挖掘——基础知识

    Python数据挖掘——基础知识 数据挖掘又称从数据中 挖掘知识.知识提取.数据/模式分析 即为:从数据中发现知识的过程 1.数据清理 (消除噪声,删除不一致数据) 2.数据集成 (多种数据源 组合在 ...