题目描述

给定一棵 $n$ 个点的树,边有边权。求简单路径上的边的乘积为完全平方数的点对 $(x,y)\ ,\ x\ne y$ 的数目。


题解

Hash

一个数是完全平方数,当且仅当每个质因子出现次数都是偶数。

因此给每一个质因子赋一个随机权值,一个数的权值等于它所有出现次数为奇数的质因子权值的异或。那么边权乘积的权值就是边权权值的异或。问题转化为求有多少条路径异或值为0。

显然, $x$ 到 $y$ 异或和为0,等价于 $x$ 到根和 $y$ 到根异或和为0。因此求出一个点到根节点的路径的权值异或和,问题转化为求有多少个相等的数。排序之后统计即可。

分解质因数可以先筛出 $\sqrt z$ 内的质数,只用质数试除,单次的时间复杂度为 $O(\frac{\sqrt z_i}{\ln z_i})$ 。

时间复杂度 $O(n\frac{\sqrt z_i}{\ln z_i})$ 。

注意:由于生日攻击原理,权值的范围需要远大于 $n^2$ ,需要long long级别。UOJ测评环境为Linux,randmax为2147483647。

#include <map>
#include <cstdio>
#include <algorithm>
#define N 100010
using namespace std;
typedef long long ll;
int prime[10010] , tot , np[10010] , head[N] , to[N << 1] , next[N << 1] , cnt;
ll val[N << 1] , sum[N];
map<int , ll> mp;
void init()
{
int i , j;
for(i = 2 ; i <= 10000 ; i ++ )
{
if(!np[i]) prime[++tot] = i;
for(j = 1 ; j <= tot && i * prime[j] <= 10000 ; j ++ )
{
np[i * prime[j]] = 1;
if(i % prime[j] == 0) break;
}
}
}
inline void add(int x , int y , ll z)
{
to[++cnt] = y , val[cnt] = z , next[cnt] = head[x] , head[x] = cnt;
}
void dfs(int x , int fa)
{
int i;
for(i = head[x] ; i ; i = next[i])
if(to[i] != fa)
sum[to[i]] = sum[x] ^ val[i] , dfs(to[i] , x);
}
int main()
{
init();
srand(20011011);
int n , i , j , x , y , z;
ll t , v , ans = 0;
scanf("%d" , &n);
for(i = 1 ; i < n ; i ++ )
{
scanf("%d%d%d" , &x , &y , &z) , v = 0;
for(j = 1 ; j <= tot ; j ++ )
{
if(z % prime[j] == 0)
{
if(mp.find(prime[j]) == mp.end()) mp[prime[j]] = (ll)rand() << 31 | rand();
t = mp[prime[j]];
while(z % prime[j] == 0) z /= prime[j] , v ^= t;
}
}
if(z != 1)
{
if(mp.find(z) == mp.end()) mp[z] = (ll)rand() << 31 | rand();
v ^= mp[z];
}
add(x , y , v) , add(y , x , v);
}
dfs(1 , 0);
sort(sum + 1 , sum + n + 1);
for(i = j = 1 ; i <= n ; i = j)
{
while(j <= n && sum[i] == sum[j]) j ++ ;
ans += (ll)(j - i) * (j - i - 1);
}
printf("%lld" , ans);
return 0;
}

【uoj#192】[UR #14]最强跳蚤 Hash的更多相关文章

  1. UOJ #192 【UR #14】 最强跳蚤

    题目链接:最强跳蚤 这道题本来不想写博客的--但是鉴于自己犯了低级错误,还是写篇博客记载一下. 一开始我的想法和题解里面的算法而比较类似,也是先分解质因数,然后用质因子是否出现偶数次来判断当前这个数是 ...

  2. 【胡策篇】题解 (UOJ 192 + CF938G + SPOJ DIVCNT2)

    和泉纱雾与烟花大会 题目来源: UOJ 192 最强跳蚤 (只改了数据范围) 官方题解: 在这里哦~(说的很详细了 我都没啥好说的了) 题目大意: 求树上各边权乘积是完全平方数的路径数量. 这种从\( ...

  3. 14.4.3 Adaptive Hash Index 自适应hash index

    14.4.3 Adaptive Hash Index 自适应hash index 自适应hash index(AHI) 让InnoDB 执行更像内存数据库在系统使用合适的负载组合和足够的内存用于Buf ...

  4. UOJ#192. 【UR #14】最强跳蚤

    题目链接 http://uoj.ac/problem/192 暑期课第二天 树上问题进阶 具体内容看笔记博客吧 题意 n个节点的树T 边有边权w 求满足(u, v)上所有边权乘积为完全平方数的路径有多 ...

  5. (GDOI2018模拟九)【UOJ#192】【UR#14】最强跳蚤

    (开头先Orz myh) 原题目: 在人类和跳蚤的战争初期,人们凭借着地理优势占据了上风——即使是最强壮的跳蚤,也无法一下越过那一堵坚固的城墙. 在经历了惨痛的牺牲后,跳蚤国王意识到再这样下去,跳蚤国 ...

  6. uoj192 【UR #14】最强跳蚤

    题目 和成爷达成一致,被卡随机的话就是过了 考虑一个完全平方数的所有质因子次幂一定是偶数,于是对于每一条边我们都只保留其出现次数为奇数的质因子 注意到有一个点的\(w\leq 80\),于是考虑状压质 ...

  7. UOJ 【UR #5】怎样跑得更快

    [UOJ#62]怎样跑得更快 题面 这个题让人有高斯消元的冲动,但肯定是不行的. 这个题算是莫比乌斯反演的一个非常巧妙的应用(不看题解不会做). 套路1: 因为\(b(i)\)能表达成一系列\(x(i ...

  8. 【uoj#315/bzoj4943】[NOI2017]蚯蚓排队 Hash

    题目描述 给出 $n$ 个字符,初始每个字符单独成字符串.支持 $m$ 次操作,每次为一下三种之一: $1\ i\ j$ :将以 $i$ 结尾的串和以 $j$ 开头的串连到一起. $2\ i$ :将 ...

  9. UOJ192 最强跳蚤

    题目链接 problem 给出一个n个点带边权的树,问有多少对\((u,v)\)满足\(u\)到\(v\)路径上边权的乘积为完全平方数. \(n\le 10^5,w\le 10^8\) solutio ...

随机推荐

  1. print puts p

    共同点:都是用来屏幕输出的. 不同点:puts 输出内容后,会自动换行(如果内容参数为空,则仅输出一个换行符号):另外如果内容参数中有转义符,输出时将先处理转义再输出p 基本与puts相同,但不会处理 ...

  2. 使用salt-ssh初始化系统安装salt-minion

    salt-ssh介绍及使用方法 在ssh上执行salt命令和状态而不安装salt-minion,类似于ansible. 1. salt-ssh的安装: [root@linux-node1 ~]# yu ...

  3. Linux系统运维基础管理命令总结

    1.查看系统负载命令:w.uptime [root@localhost ~]# w :: up days, :, user, load average: 0.00, 0.01, 0.05 USER T ...

  4. Chrome 字体模糊解决

    新的电脑装了Chorm后发现字体很模糊,看起来比较累效果是这样的: 大多数都是说使用chrome://flags/中的DirectWrite开关来使其正常显示,我打开chrome://flags/没找 ...

  5. CentOS 7.2二进制安装mysql-5.7.19

    官方文档地址:https://dev.mysql.com/doc/refman/5.7/en/binary-installation.html 开始安装 1.下载mysql二进制包 # cd /usr ...

  6. 测试类异常Manual close is not allowed over a Spring managed SqlSession

    在用Spring 和mybatis整合的 写测试类的时候报出解决办法:在全局配置文件   class="org.mybatis.spring.SqlSessionTemplate" ...

  7. 【python 3.6】python读取json数据存入MySQL(二)

    在网上找到一个包含全国各省市经纬度的json文件,也可以通过上次的办法,解析json关键字,构造SQL语句,插入数据库. JSON文件格式如下: [ { "name": " ...

  8. day-19 多种优化模型下的简单神经网络tensorflow示例

    如下样例基于tensorflow实现了一个简单的3层深度学习入门框架程序,程序主要有如下特性: 1.  基于著名的MNIST手写数字集样例数据:http://yann.lecun.com/exdb/m ...

  9. Factorials 阶乘(思维)

    Description N 的阶乘写作N!表示小于等于N的所有正整数的乘积.阶乘会很快的变大,如13!就必须用32位整数类型来存储,70!即使用浮点数也存不下了.你的任务是 找到阶乘最后面的非零位.举 ...

  10. MySort试验记录

    MySort试验记录 编写目标 结果代码 思路 将数组每一个项目的第三组数字抽出来并且排序成12345的顺序,并形成新数组k3. 把原数组的每一项与k3进行比较,每符合一项便输出一项,从而重新排序出新 ...