CF954F Runner's Problem(动态规划,矩阵快速幂)

题面

CodeForces

翻译:

有一个\(3\times M\)的田野

一开始你在\((1,2)\)位置

如果你在\((i,j)\)位置

在不出界的前提下,可以走到\((i+1,j),(i+1,j±1)\)

有\(n\)段障碍,障碍不能走

询问从\((1,2)\)到达\((M,2)\)的方案数

\(n<=10^4,M<=10^{18}\)

题解

发现\(M\)的范围非常大

很容易往矩阵快速幂的方向考虑

如果知道上一行的方案,以及这一行的状态

很容易可以列出转移矩阵

所以,将所有的障碍段离散

将\(3\)行分离,检查当前段的障碍组成

构建出转移矩阵

分段做快速幂就行了

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<set>
#include<map>
#include<vector>
#include<queue>
using namespace std;
#define ll long long
#define RG register
#define MAX 11111
#define MOD 1000000007
inline ll read()
{
RG ll x=0,t=1;RG char ch=getchar();
while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
if(ch=='-')t=-1,ch=getchar();
while(ch<='9'&&ch>='0')x=x*10+ch-48,ch=getchar();
return x*t;
}
struct Maxtrix
{
ll s[5][5];
void clear(){memset(s,0,sizeof(s));}
void init(){clear();s[1][1]=s[2][2]=s[3][3]=1;}
void M000(){clear();s[1][1]=s[1][2]=s[2][1]=s[2][2]=s[2][3]=s[3][2]=s[3][3]=1;}
};
Maxtrix operator*(Maxtrix a,Maxtrix b)
{
Maxtrix ret;ret.clear();
for(int i=1;i<=3;++i)
for(int j=1;j<=3;++j)
for(int k=1;k<=3;++k)
ret.s[i][j]=(ret.s[i][j]+1ll*a.s[i][k]*b.s[k][j]%MOD)%MOD;
return ret;
}
Maxtrix fpow(Maxtrix a,ll b)
{
Maxtrix s;s.init();
while(b){if(b&1)s=s*a;a=a*a;b>>=1ll;}
return s;
}
struct Block{ll l,r;int a;}blk[MAX];
ll tot,top;
ll S[MAX<<2];
ll c[4][MAX<<1];
ll n,Q;
ll M;
int main()
{
n=read();M=read();
for(int i=1;i<=n;++i)
{
int a=read();ll l=read(),r=read();
S[++top]=l-1,S[++top]=r;
blk[++tot]=(Block){l,r,a};
}
S[++top]=1;S[++top]=M;
sort(&S[1],&S[top+1]);
top=unique(&S[1],&S[top+1])-S-1;
for(int i=1;i<=n;++i)
{
ll L=lower_bound(&S[1],&S[top+1],blk[i].l)-S;
ll R=lower_bound(&S[1],&S[top+1],blk[i].r)-S;
c[blk[i].a][L]++;c[blk[i].a][R+1]--;
}
Maxtrix ans;ans.clear();ans.s[2][1]=1;
ll ss[4];ss[1]=ss[2]=ss[3]=0;
for(int i=2;i<=top;++i)
{
ll len=S[i]-S[i-1];
Maxtrix now;now.M000();
for(int j=1;j<=3;++j)
{
ss[j]+=c[j][i];
if(ss[j])now.s[j][1]=now.s[j][2]=now.s[j][3]=0;
}
now=fpow(now,len);
ans=now*ans;
}
cout<<ans.s[2][1]<<endl;
return 0;
}

CF954F Runner's Problem(动态规划,矩阵快速幂)的更多相关文章

  1. HDU1757-A Simple Math Problem,矩阵快速幂,构造矩阵水过

    A Simple Math Problem 一个矩阵快速幂水题,关键在于如何构造矩阵.做过一些很裸的矩阵快速幂,比如斐波那契的变形,这个题就类似那种构造.比赛的时候手残把矩阵相乘的一个j写成了i,调试 ...

  2. poj 3744 Scout (Another) YYF I - 概率与期望 - 动态规划 - 矩阵快速幂

      (Another) YYF is a couragous scout. Now he is on a dangerous mission which is to penetrate into th ...

  3. A Simple Math Problem(矩阵快速幂)(寒假闭关第一题,有点曲折啊)

    A Simple Math Problem Time Limit: 3000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Other ...

  4. Educational Codeforces Round 60 (Rated for Div. 2) - D. Magic Gems(动态规划+矩阵快速幂)

    Problem   Educational Codeforces Round 60 (Rated for Div. 2) - D. Magic Gems Time Limit: 3000 mSec P ...

  5. dutacm.club Water Problem(矩阵快速幂)

    Water Problem Time Limit:3000/1000 MS (Java/Others)   Memory Limit:163840/131072 KB (Java/Others)Tot ...

  6. LightOJ 1070 Algebraic Problem:矩阵快速幂 + 数学推导

    题目链接:http://lightoj.com/volume_showproblem.php?problem=1070 题意: 给你a+b和ab的值,给定一个n,让你求a^n + b^n的值(MOD ...

  7. A Simple Math Problem (矩阵快速幂)

    Lele now is thinking about a simple function f(x).  If x < 10 f(x) = x.  If x >= 10 f(x) = a0 ...

  8. HDU——4291A Short problem(矩阵快速幂+循环节)

    A Short problem Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)T ...

  9. hdu 1757 A Simple Math Problem (矩阵快速幂)

    Description Lele now is thinking about a simple function f(x). If x < 10 f(x) = x. If x >= 10 ...

  10. hdu 2604 Queuing(动态规划—>矩阵快速幂,更通用的模版)

    题目 最早不会写,看了网上的分析,然后终于想明白了矩阵是怎么出来的了,哈哈哈哈. 因为边上的项目排列顺序不一样,所以写出来的矩阵形式也可能不一样,但是都是可以的 //愚钝的我不会写这题,然后百度了,照 ...

随机推荐

  1. jenkens其实是代码上传工具

    Jenkins 持续集成使用教程 用 jenkins 有什么好处 通过规范化来完成,简单,繁琐,浪费时间的重复工作 规范化工作,以免出现低级错误 实现随时随地任何人一键构建 ...... 安装 jen ...

  2. Java EE平台介绍(译)

    Java EE平台介绍 2.1 企业应用总览 这一部分将对企业应用及其设计和开发进行简单介绍. 就像之前说的,Java EE 平台是为了帮助开发者开发大规模.多层次.可伸缩.服务可靠.网络安全的应用而 ...

  3. RabbitMQ各协议异同详解

    一.官网介绍 Which protocols does RabbitMQ support? RabbitMQ supports several messaging protocols, directl ...

  4. Catch That Cow:BFS:加标记数组:不加标记数组

    Catch That Cow Problem Description Farmer John has been informed of the location of a fugitive cow a ...

  5. Python基础灬高阶函数(lambda,filter,map,reduce,zip)

    高阶函数 lambda函数 关键字lambda表示匿名函数,当我们在传入函数时,有些时候,不需要显式地定义函数,直接传入匿名函数更方便. lambda函数省略函数名,冒号前为参数,冒号后函数体. # ...

  6. arcgis10.2怎么把地理坐标系转化为投影坐标系(平面,米制坐标) arcmap 10.2 从 WGS_1984 转 Beijing_1954

    方法一:在Arcmap中转换:从 WGS_1984 转 Beijing_19541.加载要转换的数据,右下角为经纬度2.点击视图——数据框属性——坐标系统3.导入或选择正确的坐标系(如选:Beijin ...

  7. JSON.stringify处理对象时的问题

    1. JSON.stringify({entry_key: 'test', entry_detail: undefined}) 结果 为 "{"entry_key": & ...

  8. web登录密码加密

    文章:如何实现登录页面密码加密 文章:用RSA加密实现Web登录密码加密传输 文章:web登录用户名密码加密 知乎文章:Web前端密码加密是否有意义? 文章:记录一次黑客模拟攻击 成功拿到淘宝账号和密 ...

  9. Hibernate:工作原理

    Hibernate的工作原理图如下所示:

  10. WPF和Expression Blend开发实例:Loading动画

    今天来点实际的,项目中可以真实使用的,一个Loading的动画,最后封装成一个控件,可以直接使用在项目中,先上图: 整个设计比较简单,就是在界面上画18个Path,然后通过动画改变OpacityMas ...