我这个人不怎么喜欢写轻重链剖分和LCT 还是喜欢dfs序、括号序列之类的

毕竟线段树好写多了

然后就有了这篇转载的文章 写在这边以后有时间看看

原文链接:https://www.cnblogs.com/weeping/p/6847112.html

参考自:《数据结构漫谈》-许昊然

dfs序是树在dfs先序遍历时的序列,将树形结构转化成序列问题处理。

dfs有一个很好的性质:一棵子树所在的位置处于一个连续区间中。

ps:deep[x]为x的深度,l[x]为dfs序中x的位置,r[x]为dfs序中x子树的结束位置

1.点修改,子树和查询

  在dfs序中,子树处于一个连续区间中。所以这题可以转化为:点修改,区间查询。用树状数组或线段树即可。

2.树链修改,单点查询

  将一条树链x,y上的所有点的权值加v。这个问题可以等价为:

  1).x到根节点的链上所有节点权值加v。

  2).y到根节点的链上所有节点权值加v。

  3).lca(x,y)到根节点的链上所有节点权值和减v。

  4).fa(lca(x,y))到根节点的链上所有节点权值和减v。  

  上面四个操作可以归结为:节点x到根节点链上所有节点的权值加减v。修改节点x权值,当且仅当y是x的祖先节点时,x对y的值有贡献。

  所以节点y的权值可以转化为节点y的子树节点贡献和。从贡献和的角度想:这就是点修改,区间和查询问题。

  修改树链x,y等价于add(l[x],v),add(l[y],v),add(l[lca(x,y)],-v),add(l[fa(lca(x,y))],-v)。

  查询:get_sum(r[x])-get_sum(l[x]-1)

  用树状数组或线段树即可。

3.树链修改,子树和查询

  树链修改部分同上一问题。下面考虑子树和查询问题:前一问是从贡献的角度想,子树和同理。

  对于节点y其到根节点的权值和,考虑其子节点x的贡献:w[x]*(deep[x]-deep[y]+1) = w[x]*(deep[x]+1)-w[x]*deep[y]

  所以节点y的子树和为:

  

  ps:公式中的v[i]为手误,应为w[i]。

  所以用两个树状数组或线段树即可:

    第一个维护∑w[i]*(deep[i]+1):支持操作单点修改,区间和查询。(这也就是问题2)

    第二个维护∑ w[i]:支持操作单点修改,区间查询。(这其实也是问题2)

4.单点更新,树链和查询

  树链和查询与树链修改类似,树链和(x,y)等于下面四个部分和相加:

  1).x到根节点的链上所有节点权值加。

  2).y到根节点的链上所有节点权值加。

  3).lca(x,y)到根节点的链上所有节点权值和的-1倍。

  4).fa(lca(x,y))到根节点的链上所有节点权值和的-1倍。

  所以问题转化为:查询点x到根节点的链上的所有节点权值和。

  修改节点x权值,当且仅当y是x的子孙节点时,x对y的值有贡献。

  差分前缀和,y的权值等于dfs中[1,l[y]]的区间和。

  单点修改:add(l[x],v),add(r[x]+1,-v);

5.子树修改,单点查询

  修改节点x的子树权值,在dfs序上就是区间修改,单点权值查询就是单点查询。

  区间修改,单点查询问题:树状数组或线段树即可;

6.子树修改,子树和查询

  题目等价与区间修改,区间查询问题。用树状数组或线段树即可。

7.子树修改,树链查询

  树链查询同上,等价为根节点到y节点的链上所有节点和问题。

  修改节点x的子树权值,当且仅当y是x的子孙节点时(或y等于x),x对y的值有贡献。

  x对根节点到y节点的链上所有节点和的贡献为:w[x]*(deep[y]-deep[x]+1)=w[x]*deep[y]-w[x]*(1-deep[x])

  同问题三,用两个树状数组或线段树即可。

dfs序七个经典问题(转)的更多相关文章

  1. dfs序七个经典问题[转]

    dfs序七个经典问题 参考自:<数据结构漫谈>-许昊然 dfs序是树在dfs先序遍历时的序列,将树形结构转化成序列问题处理. dfs有一个很好的性质:一棵子树所在的位置处于一个连续区间中. ...

  2. dfs序七个经典问题

    update-2018.07.23: 原文问题五思路描述有误,已更正. 参考自:<数据结构漫谈>-许昊然 dfs序是树在dfs先序遍历时的序列,将树形结构转化成序列问题处理. dfs有一个 ...

  3. 【转载】dfs序七个经典问题

    作者:weeping 出处:www.cnblogs.com/weeping/ 原文链接 https://www.cnblogs.com/weeping/p/6847112.html 参考自:<数 ...

  4. 【Codeforces163E】e-Government AC自动机fail树 + DFS序 + 树状数组

    E. e-Government time limit per test:1 second memory limit per test:256 megabytes input:standard inpu ...

  5. DFS序详解

    dfs序就是一棵树在dfs遍历时组成的节点序列. 它有这样一个特点:一棵子树的dfs序是一个区间. 下面是dfs序的基本代码: void dfs(int x,int pre,int d){//L,R表 ...

  6. Codeforces 343D Water Tree(DFS序 + 线段树)

    题目大概说给一棵树,进行以下3个操作:把某结点为根的子树中各个结点值设为1.把某结点以及其各个祖先值设为0.询问某结点的值. 对于第一个操作就是经典的DFS序+线段树了.而对于第二个操作,考虑再维护一 ...

  7. DFS序 参考许昊然《数据结构漫谈》

    网上特别讲DFS序的东西好像很少 太简单了? 实用性不大? 看了论文中 7个经典问题, 觉得挺有用的 原文 "所谓DFS序, 就是DFS整棵树依次访问到的结点组成的序列" &quo ...

  8. BZOJ 2819: Nim( nim + DFS序 + 树状数组 + LCA )

    虽然vfleaking好像想卡DFS...但我还是用DFS过了... 路径上的石堆异或和=0就是必败, 否则就是必胜(nim游戏). 这样就变成一个经典问题了, 用DFS序+BIT+LCA就可以在O( ...

  9. BZOJ 3439: Kpm的MC密码( trie + DFS序 + 主席树 )

    把串倒过来插进trie上, 那么一个串的kpm串就是在以这个串最后一个为根的子树, 子树k大值的经典问题用dfs序+可持久化线段树就可以O(NlogN)解决 --------------------- ...

随机推荐

  1. 随笔1-本想吐槽cnblog编辑器,但是今天猛然发现它竟然这么干净简洁

    日常用写作编辑器 多少和我一样有选择综合征的? 不愿意写博客的其中一个非常重要的原因是编辑器不好用! 博客的迁移是相当麻烦的! 所以定下cnblog写东西也是一种勇气!鼓励.... FlashNote ...

  2. Quartz学习--三 Hello Jdbc Quartz! 和 demo 结尾

    四. Hello JDBC Quartz! JDBC方式: 就是说通过数据库的jdbc链接来进行quartz的一个配置 Quartz支持了很好的支持 demo用例 使用mysql作为例子进行演示 相比 ...

  3. nordic-mesh中应用的代码实现

    nordic-mesh中应用的代码实现 Nordic-Mesh遵循SIG-Mesh-Profile中的mesh定义,实现了element.model等概念. 一个应用中包含一个或多个element,e ...

  4. ASP.NET MVC5 学习系列之模型绑定

    一.理解 Model Binding Model Binding(模型绑定) 是 HTTP 请求和 Action 方法之间的桥梁,它根据 Action 方法中的 Model 类型创建 .NET 对象, ...

  5. Numpy and Pandas

    安装 视频链接:https://morvanzhou.github.io/tutorials/data-manipulation/np-pd/ pip install numpy pip instal ...

  6. 给个理由走下去——读《我是一只IT小小鸟》有感

    和很多人一样,高考失利,迷迷茫茫的走进了软件学院.关于这个专业,具体学什么是一概不知,只知道学软件的很帅很帅,幻想着以后当个行侠仗义的黑客,或是开发一款自己的游戏都是十分诱惑人的.然而这个世界有个不成 ...

  7. Eclipse 如何安装反编译插件

    安装反编译插件 1.Help——Eclipse Marketplace 2.输入 Decompiler 搜索并安装此插件 3.根据提示无脑下一步,安装好,重启后(如果还是无法编译,需要把默认打开cla ...

  8. lintcode-507-摆动排序 II

    507-摆动排序 II 给你一个数组nums,将它重排列如下形式 nums[0] < nums[1] > nums[2] < nums[3].... 注意事项 你可以认为每个输入都有 ...

  9. Hibernate:工作原理

    Hibernate的工作原理图如下所示:

  10. 解释Spring中IOC, DI, AOP

    oc就是控制翻转或是依赖注入.通俗的讲就是如果在什么地方需要一个对象,你自己不用去通过new 生成你需要的对象,而是通过spring的bean工厂为你长生这样一个对象.aop就是面向切面的编程.比如说 ...