【bzoj4011】落忆枫音
Solution
这题。。看了一眼之后深陷矩阵树定理然后我看了一眼数据范围==
注意到是有向无环图,DAG有十分多优秀的性质所以,这题需要充分利用这个条件
首先考虑没有加边的时候,也就是单纯求这个DAG的生成树个数怎么做
其实仔细想一下不难得出答案就是各个点(除了\(1\)号点)的入度的乘积
然后我们看加了一条边之后会发生什么
1、这条边会形成自环:显然答案不变
2、这条边加入后不会形成环:那直接更新一下入度然后重新再算一遍就好了
3、这条边加入后会形成一个环:
重头戏
正着想其实。。不是特别便于统计,这个时候!正难则反!
我们考虑从直接按照DAG的方法算出来的答案中减去那些不合法的方案,那么怎么样的方案才是不合法的呢,仔细思考一下,应该就是满足以下两个条件:
(1)选了\((x,y)\)这条边(就是新连的那条)
(2)形成了一个环
然后因为原来的图是DAG,这个环显然应该是包含\((x,y)\)这条边的,或者更加直观地说,这个环应该是\((x,y)\)这条边和一条从\(y\)到\(x\)的路径组成的
那么现在问题就转化成了统计从\(y\)到\(x\)的路径的“方案数”,这里的方案数要打引号是因为。。更准确地说应该是确保选边方案中存在一条\(y\)到\(x\)路径并且包含\((x,y)\)这条边的生成树个数,具体的统计其实就跟普通的DAG路径计数一样的套路,拓扑排序一波
我们用\(val[x]\)表示\(y\)到\(x\)路径的“方案数”,初始化就是\(val[y]=\)按照DAG方式算出来的答案,然后每一个点转移时候的贡献应该是\(val[i]/in[i]\),其中\(in[i]\)表示的是在加入\((x,y)\)这条边之后\(i\)点的入度,具体为什么的话是因为。。走到\(i\)的时候,\(i\)的前驱其实已经确定了,所以没有\(in[i]\)种选择
代码大概长这个样子
#include<iostream>
#include<cstdio>
#include<cstring>
#include<queue>
using namespace std;
const int N=1e5+10,MOD=1e9+7;
struct xxx{
int y,nxt;
}a[N*2];
queue<int> q;
int h[N],in[N],d[N],val[N];
int vis[N];
int n,m,tot,ans,X,Y,ans1;
void add(int x,int y){a[++tot].y=y; a[tot].nxt=h[x]; h[x]=tot;}
void dfs(int x){
int u;
vis[x]=true;
for (int i=h[x];i!=-1;i=a[i].nxt){
u=a[i].y;
if (vis[u]) continue;
dfs(u);
}
}
int main(){
#ifndef ONLINE_JUDGE
freopen("a.in","r",stdin);
#endif
int x,y;
scanf("%d%d",&n,&m);
scanf("%d%d",&X,&Y);
memset(h,-1,sizeof(h));
tot=0;
for (int i=1;i<=m;++i){
scanf("%d%d",&x,&y);
add(x,y);
++in[y];
}
ans=1;
for (int i=2;i<=n;++i)
ans=1LL*ans*in[i]%MOD;
if (X==Y){printf("%d\n",ans);return 0;}
dfs(Y);
if (!vis[X]){
++in[Y];
ans=1;
for (int i=2;i<=n;++i) ans=1LL*ans*in[i]%MOD;
printf("%d\n",ans);
}
else{
for (int i=h[Y];i!=-1;i=a[i].nxt)
--in[a[i].y];
ans1=1;
for (int i=2;i<=n;++i) ans1=1LL*ans1*in[i]%MOD;
ans=(1LL*ans+ans1)%MOD;
printf("%d\n",ans);
}
}
【bzoj4011】落忆枫音的更多相关文章
- 【BZOJ4011】【HNOI2015】落忆枫音(动态规划)
[BZOJ4011][HNOI2015]落忆枫音(动态规划) 题面 BZOJ 洛谷 Description 「恒逸,你相信灵魂的存在吗?」 郭恒逸和姚枫茜漫步在枫音乡的街道上.望着漫天飞舞的红枫,枫茜 ...
- bzoj4011[HNOI2015]落忆枫音 dp+容斥(?)
4011: [HNOI2015]落忆枫音 Time Limit: 10 Sec Memory Limit: 512 MBSubmit: 1125 Solved: 603[Submit][Statu ...
- 【BZOJ】【4011】【HNOI2015】落忆枫音
拓扑排序+DP 题解:http://blog.csdn.net/PoPoQQQ/article/details/45194103 http://www.cnblogs.com/mmlz/p/44487 ...
- BZOJ 4011: [HNOI2015]落忆枫音( dp )
DAG上有个环, 先按DAG计数(所有节点入度的乘积), 然后再减去按拓扑序dp求出的不合法方案数(形成环的方案数). ---------------------------------------- ...
- [HNOI2015]落忆枫音 解题报告
[HNOI2015]落忆枫音 设每个点入度是\(d_i\),如果不加边,答案是 \[ \prod_{i=2}^nd_i \] 意思是我们给每个点选一个父亲 然后我们加了一条边,最后如果还这么统计,那么 ...
- 4011: [HNOI2015]落忆枫音
4011: [HNOI2015]落忆枫音 链接 分析: 原来是一个DAG,考虑如何构造树形图,显然可以给每个点找一个父节点,所以树形图的个数就是$\prod\limits_u deg[u]$. 那么加 ...
- BZOJ 4011 【HNOI2015】 落忆枫音
题目链接:落忆枫音 以下内容参考PoPoQQQ大爷的博客 首先我们先来考虑一下如果没有新加入的那条边,答案怎么算. 由于这是一个\(DAG\),所以我们给每个点随便选择一条入边,最后一定会构成一个树形 ...
- 【bzoj4011 hnoi2015】落忆枫音
题目描述 「恒逸,你相信灵魂的存在吗?」 郭恒逸和姚枫茜漫步在枫音乡的街道上.望着漫天飞舞的红枫,枫茜突然问出这样一个问题. 「相信吧.不然我们是什么,一团肉吗?要不是有灵魂......我们也不可能再 ...
- BZOJ4011: [HNOI2015]落忆枫音
Description 「恒逸,你相信灵魂的存在吗?」 郭恒逸和姚枫茜漫步在枫音乡的街道上.望着漫天飞舞的红枫,枫茜突然问出 这样一个问题. 「相信吧.不然我们是什么,一团肉吗?要不是有灵魂……我们 ...
- BZOJ4011:[HNOI2015]落忆枫音(DP,拓扑排序)
Description 「恒逸,你相信灵魂的存在吗?」 郭恒逸和姚枫茜漫步在枫音乡的街道上.望着漫天飞舞的红枫,枫茜突然问出这样一个问题. 「相信吧.不然我们是什么,一团肉吗?要不是有灵魂……我们也 ...
随机推荐
- 华为云分布式缓存服务DCS与开源服务差异对比
华为云分布式缓存DCS提供单机.主备.集群等丰富的实例类型,满足用户高读写性能及快速数据访问的业务诉求.支持丰富的实例管理操作,帮助用户省去运维烦恼.用户可以聚焦于业务逻辑本身,而无需过多考虑部署.监 ...
- JAVA学习笔记--正则表达式
正则表达式是一种强大而灵活的文本处理工具.使用正则表达式,可以让我们以编程的方式构造复杂的文本,并对输入的字符串进行搜索. 一.基础正则表达式语法(表格来自J2SE6_API) 字符 x 字符 x \ ...
- RNN: Feed Forward, Back Propagation Through Time and Truncated Backpropagation Through Time
原创作品,转载请注明出处哦~ 了解RNN的前向.后向传播算法的推导原理是非常重要的,这样, 1. 才会选择正确的激活函数: 2. 才会选择合适的前向传播的timesteps数和后向传播的timeste ...
- mysql group by 取第一条
select * from table where id in (select max(id) from table group by sku) 说明:id是自增序列,sku是表中的一个字段
- 使用appcmd命令创建iis站点及应用程序池
参考文章:iis7 appcmd的基础命令及简单用法 验证环境:Windows 7 IIS7 AppCmd.exe工具所在目录 C:\windows\sytstem32\inetsrv\目录下, ...
- python基础-02-while格式化逻辑运算
python其他知识目录 1.循环打印“我是小马过河” while True: print('我是小马过河') #4.用while从一打印到10 #5.请通过循环,1 2 3 4 5 6 8 9 ...
- win10 tomcat不能访问问题
问题描述:电脑是Win10系统的,安装了Tomcat后,本机通过80端口能顺利访问.但局域网内的其他机器却无法访问这台电脑的Tomcat服务. 故障分析: 将防火墙关闭后,可以访问,所以问题就出在防火 ...
- GitHub 的简单使用
GitHub 的简单使用 2016-01-28 16:32:481909浏览1评论 一.Git 版本控制器 commit:做一个版本:commit new file:添加到版本中,下边填的是项目的描述 ...
- YQCB冲刺周第三天
团队讨论照片 今天的任务为实现由用户记录一条数据,向数据库中添加一条数据. 遇到的问题为获取单选框.下拉菜单的参数.
- 《剑指offer》--- 两个链表的第一个公共结点
本文算法使用python3实现 1. 问题 输入两个链表,找出它们的第一个公共结点. 时间限制:1s:空间限制:32768K 2 思路描述 使用两个指针 $ p1,p2 $ 分别指向两个链 ...