【bzoj4011】落忆枫音
Solution
这题。。看了一眼之后深陷矩阵树定理然后我看了一眼数据范围==
注意到是有向无环图,DAG有十分多优秀的性质所以,这题需要充分利用这个条件
首先考虑没有加边的时候,也就是单纯求这个DAG的生成树个数怎么做
其实仔细想一下不难得出答案就是各个点(除了\(1\)号点)的入度的乘积
然后我们看加了一条边之后会发生什么
1、这条边会形成自环:显然答案不变
2、这条边加入后不会形成环:那直接更新一下入度然后重新再算一遍就好了
3、这条边加入后会形成一个环:
重头戏
正着想其实。。不是特别便于统计,这个时候!正难则反!
我们考虑从直接按照DAG的方法算出来的答案中减去那些不合法的方案,那么怎么样的方案才是不合法的呢,仔细思考一下,应该就是满足以下两个条件:
(1)选了\((x,y)\)这条边(就是新连的那条)
(2)形成了一个环
然后因为原来的图是DAG,这个环显然应该是包含\((x,y)\)这条边的,或者更加直观地说,这个环应该是\((x,y)\)这条边和一条从\(y\)到\(x\)的路径组成的
那么现在问题就转化成了统计从\(y\)到\(x\)的路径的“方案数”,这里的方案数要打引号是因为。。更准确地说应该是确保选边方案中存在一条\(y\)到\(x\)路径并且包含\((x,y)\)这条边的生成树个数,具体的统计其实就跟普通的DAG路径计数一样的套路,拓扑排序一波
我们用\(val[x]\)表示\(y\)到\(x\)路径的“方案数”,初始化就是\(val[y]=\)按照DAG方式算出来的答案,然后每一个点转移时候的贡献应该是\(val[i]/in[i]\),其中\(in[i]\)表示的是在加入\((x,y)\)这条边之后\(i\)点的入度,具体为什么的话是因为。。走到\(i\)的时候,\(i\)的前驱其实已经确定了,所以没有\(in[i]\)种选择
代码大概长这个样子
#include<iostream>
#include<cstdio>
#include<cstring>
#include<queue>
using namespace std;
const int N=1e5+10,MOD=1e9+7;
struct xxx{
int y,nxt;
}a[N*2];
queue<int> q;
int h[N],in[N],d[N],val[N];
int vis[N];
int n,m,tot,ans,X,Y,ans1;
void add(int x,int y){a[++tot].y=y; a[tot].nxt=h[x]; h[x]=tot;}
void dfs(int x){
int u;
vis[x]=true;
for (int i=h[x];i!=-1;i=a[i].nxt){
u=a[i].y;
if (vis[u]) continue;
dfs(u);
}
}
int main(){
#ifndef ONLINE_JUDGE
freopen("a.in","r",stdin);
#endif
int x,y;
scanf("%d%d",&n,&m);
scanf("%d%d",&X,&Y);
memset(h,-1,sizeof(h));
tot=0;
for (int i=1;i<=m;++i){
scanf("%d%d",&x,&y);
add(x,y);
++in[y];
}
ans=1;
for (int i=2;i<=n;++i)
ans=1LL*ans*in[i]%MOD;
if (X==Y){printf("%d\n",ans);return 0;}
dfs(Y);
if (!vis[X]){
++in[Y];
ans=1;
for (int i=2;i<=n;++i) ans=1LL*ans*in[i]%MOD;
printf("%d\n",ans);
}
else{
for (int i=h[Y];i!=-1;i=a[i].nxt)
--in[a[i].y];
ans1=1;
for (int i=2;i<=n;++i) ans1=1LL*ans1*in[i]%MOD;
ans=(1LL*ans+ans1)%MOD;
printf("%d\n",ans);
}
}
【bzoj4011】落忆枫音的更多相关文章
- 【BZOJ4011】【HNOI2015】落忆枫音(动态规划)
[BZOJ4011][HNOI2015]落忆枫音(动态规划) 题面 BZOJ 洛谷 Description 「恒逸,你相信灵魂的存在吗?」 郭恒逸和姚枫茜漫步在枫音乡的街道上.望着漫天飞舞的红枫,枫茜 ...
- bzoj4011[HNOI2015]落忆枫音 dp+容斥(?)
4011: [HNOI2015]落忆枫音 Time Limit: 10 Sec Memory Limit: 512 MBSubmit: 1125 Solved: 603[Submit][Statu ...
- 【BZOJ】【4011】【HNOI2015】落忆枫音
拓扑排序+DP 题解:http://blog.csdn.net/PoPoQQQ/article/details/45194103 http://www.cnblogs.com/mmlz/p/44487 ...
- BZOJ 4011: [HNOI2015]落忆枫音( dp )
DAG上有个环, 先按DAG计数(所有节点入度的乘积), 然后再减去按拓扑序dp求出的不合法方案数(形成环的方案数). ---------------------------------------- ...
- [HNOI2015]落忆枫音 解题报告
[HNOI2015]落忆枫音 设每个点入度是\(d_i\),如果不加边,答案是 \[ \prod_{i=2}^nd_i \] 意思是我们给每个点选一个父亲 然后我们加了一条边,最后如果还这么统计,那么 ...
- 4011: [HNOI2015]落忆枫音
4011: [HNOI2015]落忆枫音 链接 分析: 原来是一个DAG,考虑如何构造树形图,显然可以给每个点找一个父节点,所以树形图的个数就是$\prod\limits_u deg[u]$. 那么加 ...
- BZOJ 4011 【HNOI2015】 落忆枫音
题目链接:落忆枫音 以下内容参考PoPoQQQ大爷的博客 首先我们先来考虑一下如果没有新加入的那条边,答案怎么算. 由于这是一个\(DAG\),所以我们给每个点随便选择一条入边,最后一定会构成一个树形 ...
- 【bzoj4011 hnoi2015】落忆枫音
题目描述 「恒逸,你相信灵魂的存在吗?」 郭恒逸和姚枫茜漫步在枫音乡的街道上.望着漫天飞舞的红枫,枫茜突然问出这样一个问题. 「相信吧.不然我们是什么,一团肉吗?要不是有灵魂......我们也不可能再 ...
- BZOJ4011: [HNOI2015]落忆枫音
Description 「恒逸,你相信灵魂的存在吗?」 郭恒逸和姚枫茜漫步在枫音乡的街道上.望着漫天飞舞的红枫,枫茜突然问出 这样一个问题. 「相信吧.不然我们是什么,一团肉吗?要不是有灵魂……我们 ...
- BZOJ4011:[HNOI2015]落忆枫音(DP,拓扑排序)
Description 「恒逸,你相信灵魂的存在吗?」 郭恒逸和姚枫茜漫步在枫音乡的街道上.望着漫天飞舞的红枫,枫茜突然问出这样一个问题. 「相信吧.不然我们是什么,一团肉吗?要不是有灵魂……我们也 ...
随机推荐
- 学习笔记之shell命令
linux shell命令学习笔记:~这里只是对自己一些常用但是不熟悉的的命令进行记录 -------------------------------------------------------- ...
- 树形dp入门两题
题目描述 小明对数学饱有兴趣,并且是个勤奋好学的学生,总是在课后留在教室向老师请教一些问题.一天他早晨骑车去上课,路上见到一个老伯正在修剪花花草草,顿时想到了一个有关修剪花卉的问题.于是当日课后,小明 ...
- Linux 配置网络连接
在VMware里,依次点击”编辑“ - ”虚拟网络编辑器“,如下图,我选择的是NAT模式: 在这个界面接着点"NAT设置",查看虚拟机的网关,这个网关在第三步要用.我这里的网关是1 ...
- ES6的新特性(10)——Class 的基本语法
Class 的基本语法 简介 JavaScript 语言中,生成实例对象的传统方法是通过构造函数.下面是一个例子. function Point(x, y) { this.x = x; this.y ...
- Scrum立会报告+燃尽图(十月十二日总第三次):视频相关工作
此作业要求参见:https://edu.cnblogs.com/campus/nenu/2018fall/homework/2190 Scrum立会master:孙赛佳 一.小组介绍 组长:付佳 组员 ...
- 贪吃蛇GUI Prototype
- RIGHT-BICEP单元测试——“二柱子四则运算升级版”
RIGHT-BICEP单元测试 ——“二柱子四则运算升级版” ”单元测试“这对于我们来说是一个全新的专业含义,在上了软件工程这门课,并当堂编写了简单的"求一组数中的最大值"函数的单 ...
- 四则运算——单元测试(测试方法:Right-BICEP )
一.测试的具体部位 Right-结果是否正确? B-是否所有的边界条件都是正确的? I-能查一下反向关联吗? C-能用其他手段交叉检查一下结果吗? E-你是否可以强制错误条件发生? P-是否满足性能要 ...
- 【week10】规格说明书练习-吉林市1日游
假设我们全班同学及教师去吉林省吉林市1日游,请为这次活动给出规格说明书. 版本:1.0 编订:于淼 团队:2016级计算机技术全体同学 日期:2016/11/19 1.引言 1.1 编写目的 1.2 ...
- static关键字的新用法
static关键字的新用法和总结: static这个关键字,也可以像“self”一样,代表“当前类”,用于访问一个类的“静态属性或静态方法”: 但, static,在应用中,更灵活,因此更常见! 因为 ...