数据挖掘---支持向量机(SVM)
•1.SVM 的基本思想:
•SVM把分类问题转换成寻求分类平面的问题,并通过最大化分类边界点到分类平面的距离来实现分类。通俗的讲支持向量机的解决的问题是找到最好的分类超平面。支持向量机(Support vector machine)通常用来解决二分类问题
2.构造目标函数
类似于点到直线的距离,可以得到点到超平面的距离为
•在Logistic回归算法,我们是把数据分成0类和 1 类,而同样为了推导式子的方便性,采用-1 和 1 两类。
可以将红色框的式子转换成:
•目标方程:
我们需要求的是:两数据集中几个数据最近的点的最大的距离。
在满足约束条件(即样本点为支持向量)下,最大的几何间隔中取最小的值。max L(w,b,a) 是得到支持向量的样本点,然后再这些样本点中找到min 1/2 || w ||2 的最小值(最大间隔)。
•可以得到有条件约束的最优化问题,通常引入拉格朗日函数简化上述问题,称此类问题为对偶问题(The wolfe dualproblem)。
•使用拉格朗日乘数法用来解决等式约束下的最优化问题:
•对偶问题的求解:
•步骤1 :固定 α ,然后L(ω, b, α)对 ω 、b 求偏导,令其偏导数等于0。
•把上述2式带入到L(ω, b, α)当中:
•步骤2 :对 α 求极大,通过步骤1 已经把变量 ω 、b 消去,函数只有 α。
•在式子前面加个 - 负号,是求极大值转换成求极小值:
3.软间隔
•实际遇到的问题数据总是有噪音的,也就是说可能存在一两个可忽略的特殊点使margin大大减小,也可能有一两个特殊点导致集合线性不可分(如下图),所以我们需要允许模型犯一定的错误来过滤掉噪音,即允许间隔的调整称为软间隔。
•4.核函数kernel
(多项式核函数)(高斯核函数计算花销大:gamma越大会形成过拟合,越小则会欠拟合)(升维)
•设χ是输入空间(欧氏空间或离散集合),Η为特征空间(希尔伯特空间),如果存在一个从χ到Η的映射
•φ(x):χ→Η
•使得对所有的x,z∈χ,函数Κ(x,z)=φ(x)∙φ(z), 则称Κ(x,z)为核函数,φ(x)为映射函数,φ(x)∙φ(z)为x,z映射到特征空间上的内积。
•由于映射函数十分复杂难以计算,在实际中,通常都是使用核函数来求解内积,计算复杂度并没有增加,映射函数仅仅作为一种逻辑映射,表征着输入空间到特征空间的映射关系。至于为什么需要映射后的特征而不是最初的特征来参与计算,为了更好地拟合是其中一个原因,另外的一个重要原因是样例可能存在线性不可分的情况,而将特征映射到高维空间后,往往就可分了。
5.SMO(Sequential Minimal Optimization, 序列最小优化)算法解析:
SVM,有许多种实现方式,SMO算法实现是一种。
1998年,由Platt提出的序列最小最优化算法(SMO)可以高效的求解上述SVM问题,它把原始求解N个参数二次规划问题分解成很多个子二次规划问题分别求解,每个子问题只需要求解2个参数,方法类似于坐标上升,节省时间成本和降低了内存需求。每次启发式选择两个变量进行优化,不断循环,直到达到函数最优值。
参考:SVM支持向量机推导
数据挖掘---支持向量机(SVM)的更多相关文章
- 【IUML】支持向量机SVM
从1995年Vapnik等人提出一种机器学习的新方法支持向量机(SVM)之后,支持向量机成为继人工神经网络之后又一研究热点,国内外研究都很多.支持向量机方法是建立在统计学习理论的VC维理论和结构风险最 ...
- 以图像分割为例浅谈支持向量机(SVM)
1. 什么是支持向量机? 在机器学习中,分类问题是一种非常常见也非常重要的问题.常见的分类方法有决策树.聚类方法.贝叶斯分类等等.举一个常见的分类的例子.如下图1所示,在平面直角坐标系中,有一些点 ...
- 一步步教你轻松学支持向量机SVM算法之案例篇2
一步步教你轻松学支持向量机SVM算法之案例篇2 (白宁超 2018年10月22日10:09:07) 摘要:支持向量机即SVM(Support Vector Machine) ,是一种监督学习算法,属于 ...
- 一步步教你轻松学支持向量机SVM算法之理论篇1
一步步教你轻松学支持向量机SVM算法之理论篇1 (白宁超 2018年10月22日10:03:35) 摘要:支持向量机即SVM(Support Vector Machine) ,是一种监督学习算法,属于 ...
- 支持向量机SVM 参数选择
http://ju.outofmemory.cn/entry/119152 http://www.cnblogs.com/zhizhan/p/4412343.html 支持向量机SVM是从线性可分情况 ...
- 大数据-10-Spark入门之支持向量机SVM分类器
简介 支持向量机SVM是一种二分类模型.它的基本模型是定义在特征空间上的间隔最大的线性分类器.支持向量机学习方法包含3种模型:线性可分支持向量机.线性支持向量机及非线性支持向量机.当训练数据线性可分时 ...
- 机器学习:Python中如何使用支持向量机(SVM)算法
(简单介绍一下支持向量机,详细介绍尤其是算法过程可以查阅其他资) 在机器学习领域,支持向量机SVM(Support Vector Machine)是一个有监督的学习模型,通常用来进行模式识别.分类(异 ...
- 机器学习算法 - 支持向量机SVM
在上两节中,我们讲解了机器学习的决策树和k-近邻算法,本节我们讲解另外一种分类算法:支持向量机SVM. SVM是迄今为止最好使用的分类器之一,它可以不加修改即可直接使用,从而得到低错误率的结果. [案 ...
- 机器学习之支持向量机—SVM原理代码实现
支持向量机—SVM原理代码实现 本文系作者原创,转载请注明出处:https://www.cnblogs.com/further-further-further/p/9596898.html 1. 解决 ...
随机推荐
- html5--移动端视频video的android兼容,去除播放控件、全屏等
html5 中的video 在手机浏览器中的总结所有页面播放时, 如果选择全屏播放, 播放画面将浮动到屏幕的最上层 IOS 手机 自动播放 播放界面浮动文字 播放时是否自动全屏 能否嵌入在页面中播 ...
- 将Spring源代码导入eclipse步骤
深入学习spring.研读源代码是必须的~ 1.到https://github.com/spring-projects/spring-framework/releases去找自己须要的spring版本 ...
- windows cmd命令大全/cmd命令提示符大全
刚接触电脑的时候是从DOS系统开始,DOS时代根本就没有Windows这样的视窗操作界面,只有一个黑漆漆的窗口,让你输入命令.所以学DOS系统操作,cmd命令提示符是不可或缺的.可以告诉大家,大多数的 ...
- js里面正则表示满足多个条件的写法
实例,满足条件里面必须包含数字,字母和下划线组成 代码如下: var reg = /^([a-z]+\d+\_+)|([a-z]+\_+\d+)|(\_+[a-z]+\d+)|(\_+\d+[a-z] ...
- PopupMenu弹出菜单
CMenu MoviePopupMenu;//声明 MoviePopupMenu.CreatePopupMenu();//创建弹出菜单 根据对象类型增加弹出项 ) // FLASH对象 { CStri ...
- MySQL 分组后取每组前N条数据
与oracle的 rownumber() over(partition by xxx order by xxx )语句类似,即:对表分组后排序 创建测试emp表 1 2 3 4 5 6 7 8 9 ...
- Mysql数据库一个表字段中存了id,并以逗号分隔,id对应的详细信息在另一个表中
有两张表, 一张为爱好表b表 一张为用户表 u表 u表 id 名称 爱好Id 1 张三 1,2,3,4 2 李四 2,5 b表 id 名称 1 打乒乓 2 ...
- CSS3 Transform变形(2D转换)
Transform:对元素进行变形:Transition:对元素某个属性或多个属性的变化,进行控制(时间等),类似flash的补间动画.但只有两个关键贞.开始,结束.Animation:对元素某个属性 ...
- centos7 ubuntu14 添加sudo 权限 ,禁用每次sudo 需要输入密码
安装完centos7后,默认没有启用sudo,首先应该是对sudo进行设置.sudo的作用就是使当前非root用户在使用没有权限的命令 时,直接在命令前加入sudo,在输入自己当前用户的密码就可以完成 ...
- 关于hql语句的一些问题
1.student is not mapped问题: 在执行显示数据库数据的时候出错 大概提示说: errors: s.entr_Id student is not mapped 碰到这种情况一般是: ...