容斥原理解决某个区间[1,n]闭区间与m互质数数量问题
首先贴出代码(闭区间[1,n]范围内和m互质的数)
代码:
int solve(II n,II m){
vector<II>p;
for(II i=;i*i<=m;i++){
if(m%i==){
p.push_back(i);
while(m%i==) m/=i;
}
}
if(m>) p.push_back(m);
II sz=p.size();
LL sum=;
for(II i=;i<(<<sz);i++){
II ct=;
LL mul=;
for(II j=;j<sz;j++){
if(i&(<<j)){
ct++;
mul*=p[j];
}
}
if(ct&) sum+=n/mul;
else sum-=n/mul;
}
return n-sum;
}
这里解释一下原理:首先假设m有x个不同的质因子,那么可以组成的因子数就是2^x-1种,然后10^18以内所有的数的质因子个数不会超过15个,所以2^15次方暴力枚举所有情况这个复杂度还是可取的。我们假设p1,p2,p3都是m的质因子,假设当前枚举的因子是p1*p2*p3那么n以内可以整除p1*p2*p3的数量就是n/(p1*p2*p3),但是这里考虑到一个会重复问题就是拥有奇数个质因数的因子的在n以内可以整除的数量已经包含了偶数个数量,但是偶数个的并不包含奇数个的,所以我们枚举的时候需要奇加偶减,这样我们算出来的ans是n以内和m不互质的数的数量,那么和m互质的数量就是n-ans。
贴上一些可以用这个方法解决的练习题:
HDU1695:这个题好像正解使用什么莫比乌斯反演,题目的意思是求[1,a],[1,b]有多少对数GCD(x,y)==k,但是(x,y)和(y,x)算一对,有一个定理如果GCD(x,y)==k ,则GCD(x/k,y/k)==1那么现在问题转化为求[1,a/k],[1,b/k]以内互质的数有多少对,现在我们要取minn=min(a/k,b/k),我们可以先求minn的欧拉函数的前缀和,然后再求minn+1到max(a/k,b/k)的数在[1,max(a/k.b/k)]以内所有与它互质的数的数量,然后把所有的加起来就可以了。
代码:
//Author: xiaowuga
#include <bits/stdc++.h>
using namespace std;
#define inf 0x3f3f3f3f
#define MAX INT_MAX
#define mem(s,ch) memset(s,ch,sizeof(s))
const long long N=;
const long long mod=1e9+;
typedef long long LL;
typedef int II;
typedef unsigned long long ull;
#define nc cout<<"nc"<<endl
#define endl "\n"
vector<LL>Euler;
void init_Euler(II n){
Euler.resize(n+);
Euler[]=;
Euler[]=;
for(LL i=;i<n;i++) Euler[i]=i;
for(LL i=;i<n;i++){
if(Euler[i]==i){
for(LL j=i;j<n;j+=i)
Euler[j]=Euler[j]/i*(i-);//先进行除法防止溢出
}
}
for(II i=;i<n;i++){
Euler[i]+=Euler[i-];
}
}
int solve(II n,II m){
vector<II>p;
for(II i=;i*i<=m;i++){
if(m%i==){
p.push_back(i);
while(m%i==) m/=i;
}
}
if(m>) p.push_back(m);
II sz=p.size();
LL sum=;
for(II i=;i<(<<sz);i++){
II ct=;
LL mul=;
for(II j=;j<sz;j++){
if(i&(<<j)){
ct++;
mul*=p[j];
}
}
if(ct&) sum+=n/mul;
else sum-=n/mul;
}
return n-sum;
}
int main() {
ios::sync_with_stdio(false);cin.tie();
II a,b,c,d,k;
II T,ca=;
init_Euler(+);
cin>>T;
while(T--){
cin>>a>>b>>c>>d>>k;
if(k==||k>b||k>d){
cout<<"Case "<<++ca<<": "<<<<endl;
continue;
}
if(b>d) swap(b,d);
b/=k;d/=k;
LL ans=Euler[b];
for(II i=b+;i<=d;i++){
ans+=solve(b,i);
}
cout<<"Case "<<++ca<<": "<<ans<<endl;
}
return ;
}
POJ2773:这个题求第n个与k互质的数。
1.一个简单的思路就是如果[1,k]中有x个与k互质的数,那么[k+1,2*k]中也有x个,每个k个一个循环都会出现x个数与k互质,而且加入y<k且y与k互质,则t*k+y也与k互质。那么我们第一个方法可以暴力算出比k小的数里面所有与k互质的数都是多少复杂度是klog(k),然后看一下n是k第几轮循环里面。然后直接确定这个数多少。
2.二分+验证的思想,首先一个数越大,那么他包含的与k互质的数一定越多对吧?这个性质不就是单调性吗?任何满足单调性的问题我们都可以用二分来解决,所以我们可以用二分,加验证的思想找到和第n个k互质的数是多少
代码:
//Author: xiaowuga
#include<iostream>
#include<vector>
using namespace std;
#define inf 0x3f3f3f3f
#define MAX INT_MAX
#define mem(s,ch) memset(s,ch,sizeof(s))
const long long N=;
const long long mod=1e9+;
typedef long long LL;
typedef int II;
typedef unsigned long long ull;
#define nc cout<<"nc"<<endl
#define endl "\n"
LL solve(II r,LL n){
vector<int>p;
for(II i=;i*i<=r;i++){
if(r%i==){
p.push_back(i);
while(r%i==) r/=i;
}
}
if(r>) p.push_back(r);
LL sum=;
for(LL i=;i<(<<p.size());i++){
LL d=,ct=;
for(II j=;j<p.size();j++){
if(i&(<<j)){
ct++;
d*=p[j];
}
}
if(ct%) sum+=n/d;
else sum-=n/d;
}
return n-sum;
}
int main() {
ios::sync_with_stdio(false);cin.tie();
II n,k;
while(cin>>n>>k){
LL l=,r=inf*;
LL ans=;
while(l<r){
LL m=l+(r-l)/;
LL t=solve(n,m);
if(t>=k){
if(t==k) ans=m;
r=m;
}
else{
l=m+;
}
}
cout<<ans<<endl;
}
return ;
}
容斥原理解决某个区间[1,n]闭区间与m互质数数量问题的更多相关文章
- paip. 解决php 以及 python 连接access无效的参数量。参数不足,期待是 1”的错误
paip. 解决php 以及 python 连接access无效的参数量.参数不足,期待是 1"的错误 作者Attilax 艾龙, EMAIL:1466519819@qq.com 来源 ...
- HDU 3709 Balanced Number 求区间内的满足是否平衡的数量 (数位dp)
平衡数的定义是指,以某位作为支点,此位的左面(数字 * 距离)之和 与右边相等,距离是指某位到支点的距离; 题意:求区间内满足平衡数的数量 : 分析:很好这又是常见的数位dp , 不过不同的是我们这次 ...
- 2017乌鲁木齐区域赛K(容斥原理【求指定区间内与n互素的数的个数】)
#include<bits/stdc++.h>using namespace std;const long long mod = 998244353;typedef const long ...
- 贪心算法----区间选点问题(POJ1201)
题目: 题目的大致意思是,给定n个闭区间,并且这个闭区间上的点都是整数,现在要求你使用最少的点来覆盖这些区间并且每个区间的覆盖的点的数量满足输入的要求点覆盖区间的数量. 输入: 第一行输入n,代表n个 ...
- BZOJ 3226: [Sdoi2008]校门外的区间
题目链接:http://www.lydsy.com:808/JudgeOnline/problem.php?id=3226 题意:初始集合S为空.模拟四种集合操作:集合并.交.差.补集并. 思路:区间 ...
- [kuangbin带你飞]专题二十二 区间DP
ID Origin Title 17 / 60 Problem A ZOJ 3537 Cake 54 / 105 Problem B LightOJ 1422 Hallowee ...
- POJ 2773 Happy 2006#素数筛选+容斥原理+二分
http://poj.org/problem?id=2773 说实话这道题..一点都不Happy好吗 似乎还可以用欧拉函数来解这道题,但正好刚学了容斥原理和二分,就用这个解法吧. 题解:要求输出[1, ...
- 线段树(区间树)之区间染色和4n推导过程
前言 线段树(区间树)是什么呢?有了二叉树.二分搜索树,线段树又是干什么的呢?最经典的线段树问题:区间染色:正如它的名字而言,主要解决区间的问题 一.线段树说明 1.什么是线段树? 线段树首先是二叉树 ...
- HDU1695:GCD(容斥原理+欧拉函数+质因数分解)好题
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1695 题目解析: Given 5 integers: a, b, c, d, k, you're to ...
随机推荐
- C/C++,从未过时的编程语言之父
C/C++,持续火爆的编程语言之父 --訪传智播客C/C++学院院长传智·萧峰 编程语言作为实现互联网+基础必备工具,构建着互联网行业美轮美奂的大时代.作为编程语言之父--C语言,更是如鱼得水,在甘愿 ...
- Java基础-JDBC访问数据库
基本步骤: 加载数据库驱动 建立连接 创建SQL语句 执行SQL语句 处理执行结果 释放资源 代码示例: import java.sql.Connection; import java.sql.Dri ...
- C++类中静态成员函数
引述自<深入探索C++对象模型>2001:5:1版次,p-150 static member functions的主要特性就是它没有this指针,所以: 1.它不能直接存取其所在class ...
- [转] web_reg_save_param得到的数组的处理
方法一: 函数(sprintf,web_reg_save_param),其中红色字体是本文档最重要的#include "web_api.h" Action(){int i,iloo ...
- HEVC compressGOP 接口
HEVC编码调用compressGOP()来实现一个GOPSize 图像序列的编码.在reference code里,真正做compressGOP编码之前,需要存GOPSize帧YUV在m_cList ...
- VC++ 创建一个动态增长的层叠菜单
工作中需要创建一个动态增长的层叠菜单,类似于动态增长的多语言切换菜单,也是废了好大劲哪,分享一下,请交流参考. 类似效果图: 弹出子菜单各菜单项的意义一致,用ON_COMMAND_RANGE宏来统一实 ...
- mysql数据库使用mysqldump工具针对一个数据库备份,使用--databases选项与不使用该参数的区别
需求描述: 今天在做mysqldump备份某个数据库的试验,在备份某个数据库的时候可以使用 --databases参数,也可以直接进行某个数据库的备份,那么这里记录下两者的区别 操作过程: 1.使用- ...
- ios开发之--判断奇偶数
==) {//如果是偶数 }else{//如果是奇数 } 记录下!
- 06python 之基本数据类型
数字 int(整型) 在32位机器上,整数的位数为32位,取值范围为-2**31~2**31-1,即-2147483648~2147483646 在64位机器上,整数的位数为64位,取值范围为-2** ...
- Android UI优化——include、merge 、ViewStub
在布局优化中,Androi的官方提到了这三种布局<include />.<merge />.<ViewStub />,并介绍了这三种布局各有的优势,下面也是简单说一 ...