1405 树的距离之和

题意

给定一棵无根树,假设它有n个节点,节点编号从1到n,求任意两点之间的距离(最短路径)之和。

分析

树形DP。

首先我们让 \(1\) 为根。要开两个数组 \(up \ down\) 分别记录上面点、下面的点到当前点的距离之和。那么对于每个点答案就是 \(up[i] + down[i]\) 。

\(sons[u]\) 数组表示 \(u\) 以及它下面的所有子孙的数量。

显然 \(down[u]\) 是很好求的,当我们计算到某一点 \(u\) 时,当它的以 v 节点为根的子树递归结束后,有 \(down[u] = down[v] + sons[v]\) ,可以把 \(sons[v]\) 当做下面所有点到 \(u\) 这一点有多少条路径,对于 \(u - v\) 这条边,每一条路径都会算一次贡献。

然后在开个 \(DFS\) 去求 \(up[v]\) ,设 \(u\) 为 \(v\) 的父亲节点,有 \(up[v] = up[u] + (n - sons[u]) + (sons[u] - sons[v]) + (down[u] - down[v] - sons[v])\) ,和上面类似 ,第一个括号算的是所有 u 上面的的节点的数量,第二个括号算的是除了 \(v\) 这棵子树,\(u\) 的其它子树的节点数量,意义就和上面的 \(sons[v]\) 一样,最后一个括号算的是 \(u\) 的其它子树上的节点到 \(u\) 的距离之和。

附上一组数据,模拟完就懂了(树形DP真是在树上找规律啊.....)

7
1 2
2 3
2 4
4 6
4 7
2 5
----
13
8
13
9
13
14
14

code

#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
#include<set>
#include<vector>
#include<iostream>
#include<map>
using namespace std;
typedef long long ll;
const int MAXN = 1e5 + 10;
const int INF = 1e9;
ll up[MAXN], down[MAXN];
int n, sons[MAXN];
int head[MAXN << 1];
struct edge {
int to, next;
}e[MAXN << 1];
int cnt = 0;
void addedge(int u, int v) {
e[cnt].to = v;
e[cnt].next = head[u];
head[u] = cnt++;
}
void dfs1(int fa, int u) {
sons[u] = 1;
for(int i = head[u]; ~i; i = e[i].next) {
int v = e[i].to;
if(v != fa) {
dfs1(u, v);
sons[u] += sons[v];
down[u] += down[v] + sons[v];
}
}
}
void dfs2(int fa, int u) {
for(int i = head[u]; ~i; i = e[i].next) {
int v = e[i].to;
if(v != fa) {
up[v] = up[u] + (n - sons[u]) + (sons[u] - sons[v]) + (down[u] - down[v] - sons[v]);
dfs2(u, v);
}
}
}
int main() {
scanf("%d", &n);
memset(head, -1, sizeof head);
for(int i = 1; i < n; i++) {
int u, v;
scanf("%d%d", &u, &v);
addedge(u, v);
addedge(v, u);
}
dfs1(0, 1);
dfs2(0, 1);
for(int i = 1; i <= n; i++) {
printf("%lld\n", up[i] + down[i]);
}
return 0;
}

51Nod - 1405 树的距离之和(树形DP)的更多相关文章

  1. 51nod 1405 树的距离之和 树形dp

    1405 树的距离之和 基准时间限制:1 秒 空间限制:131072 KB   收藏  关注 给定一棵无根树,假设它有n个节点,节点编号从1到n, 求任意两点之间的距离(最短路径)之和. Input ...

  2. 51Nod 1405 树的距离之和(dp)

    1405 树的距离之和 基准时间限制:1 秒 空间限制:131072 KB 分值: 40 难度:4级算法题  收藏  关注 给定一棵无根树,如果它有n个节点,节点编号从1到n, 求随意两点之间的距离( ...

  3. 51Nod 1405 树的距离之和 (树dp)

    题目链接:http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1405 中文题面不解释了,两次dfs,第一次自下向上,第二次自上 ...

  4. 51nod 1405 树的距离之和(dfs)

    http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1405 题意: 思路: 先求出所有点到根节点的距离,需要维护每棵子树的大小 ...

  5. 51 nod 1405 树的距离之和

    1405 树的距离之和 基准时间限制:1 秒 空间限制:131072 KB 分值: 40 难度:4级算法题   给定一棵无根树,假设它有n个节点,节点编号从1到n, 求任意两点之间的距离(最短路径)之 ...

  6. [51NOD1405] 树的距离之和(树DP)

    题目链接:http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1405 (1)我们给树规定一个根.假设所有节点编号是0-(n-1 ...

  7. BZOJ5123 线段树的匹配(树形dp)

    线段树的任意一棵子树都相当于节点数与该子树相同的线段树.于是假装在树形dp即可,记忆化搜索实现,有效状态数是logn级别的. #include<iostream> #include< ...

  8. 1113: [视频]树形动态规划(TreeDP)8:树(tree)(树形dp状态设计总结)

    根据最近做的几道树形dp题总结一下规律.(从这篇往前到洛谷 P1352 ) 这几道题都是在一颗树上,然后要让整棵树的节点或边 满足一种状态.然后点可以影响到相邻点的这种状态 然后求最小次数 那么要从两 ...

  9. [CEOI2007]树的匹配Treasury(树形DP+高精)

    题意 给一棵树,你可以匹配有边相连的两个点,问你这棵树的最大匹配时多少,并且计算出有多少种最大匹配. N≤1000,其中40%的数据答案不超过 108 题解 显然的树形DP+高精. 这题是作为考试题考 ...

随机推荐

  1. GTID环境中手动修复主从故障一例(Error 1236/Error 1396)

      Preface       I got an replication error 1236 when I modified the password of a user without start ...

  2. visio2013密钥

    66DNF-28W69-W4PPV-W3VYT-TJDBQ http://www.xiazaizhijia.com/rjjc/133264.html

  3. Oracle 学习----:查看当前时间与Sqlserver语句不一样了

    oracle:select sysdate from dual sqlserver: select getdate() ---------------------试试这个--------------- ...

  4. Entity Framework(三)---FluentAPI和增删查改

    一.FluentAPI: 1.基本配置: namespace ConsoleApp14.ModelConfig { public class PersonConfig: EntityTypeConfi ...

  5. (原)UE4.20 自定义编辑器 - 基础(一)创建编辑器模块

            @author:白袍小道 前言: 本小文参考了UnrealC++,游戏编辑器(应该都找不到了嘿嘿)等书籍. 引擎基于UnrealEngine4.20版本(由于UnrealC++ 用的是 ...

  6. cookie换肤功能

    <div class="selectSkin"> <input id="red" class="themeBtn" typ ...

  7. 剑指offer:二维数组中的查找

    目录 题目 解题思路 具体代码 题目 题目链接 剑指offer:二维数组中的查找 题目描述 在一个二维数组中(每个一维数组的长度相同),每一行都按照从左到右递增的顺序排序,每一列都按照从上到下递增的顺 ...

  8. restorator 运行后其他所有EXE文件都无法运行的解决方案

    昨天要反编译一个EXE,用RESTORATOR来查看资源罗列情况,倒霉的事情发生了,所有EXE文件点右键后‘打开’都没有了,刚开始以为中度了,进安全模式看,发现文件都没有异常,并且在安全模式下问题照样 ...

  9. Hexo博客收录百度和谷歌-基于Next主题

    Hexo博客收录百度和谷歌-基于Next主题(应该是比较全面的一篇教程) 我们的博客做出来当然是希望别人来访问,但是Github和Coding都做了防爬虫处理,这样子我们博客可能就无法被搜索引擎收录, ...

  10. 在nodejs中 Object的toString()方法 querystring的stringify() JSON.stringify()

    刚学nodejs,做到一个例子:发送简单的HTTP请求.遇到一个问题,客户端给服务端发送的消息到服务端,服务端收不到消息,确切的说是“”. 以下是服务端代码:server.js const http ...