1405 树的距离之和

题意

给定一棵无根树,假设它有n个节点,节点编号从1到n,求任意两点之间的距离(最短路径)之和。

分析

树形DP。

首先我们让 \(1\) 为根。要开两个数组 \(up \ down\) 分别记录上面点、下面的点到当前点的距离之和。那么对于每个点答案就是 \(up[i] + down[i]\) 。

\(sons[u]\) 数组表示 \(u\) 以及它下面的所有子孙的数量。

显然 \(down[u]\) 是很好求的,当我们计算到某一点 \(u\) 时,当它的以 v 节点为根的子树递归结束后,有 \(down[u] = down[v] + sons[v]\) ,可以把 \(sons[v]\) 当做下面所有点到 \(u\) 这一点有多少条路径,对于 \(u - v\) 这条边,每一条路径都会算一次贡献。

然后在开个 \(DFS\) 去求 \(up[v]\) ,设 \(u\) 为 \(v\) 的父亲节点,有 \(up[v] = up[u] + (n - sons[u]) + (sons[u] - sons[v]) + (down[u] - down[v] - sons[v])\) ,和上面类似 ,第一个括号算的是所有 u 上面的的节点的数量,第二个括号算的是除了 \(v\) 这棵子树,\(u\) 的其它子树的节点数量,意义就和上面的 \(sons[v]\) 一样,最后一个括号算的是 \(u\) 的其它子树上的节点到 \(u\) 的距离之和。

附上一组数据,模拟完就懂了(树形DP真是在树上找规律啊.....)

7
1 2
2 3
2 4
4 6
4 7
2 5
----
13
8
13
9
13
14
14

code

#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
#include<set>
#include<vector>
#include<iostream>
#include<map>
using namespace std;
typedef long long ll;
const int MAXN = 1e5 + 10;
const int INF = 1e9;
ll up[MAXN], down[MAXN];
int n, sons[MAXN];
int head[MAXN << 1];
struct edge {
int to, next;
}e[MAXN << 1];
int cnt = 0;
void addedge(int u, int v) {
e[cnt].to = v;
e[cnt].next = head[u];
head[u] = cnt++;
}
void dfs1(int fa, int u) {
sons[u] = 1;
for(int i = head[u]; ~i; i = e[i].next) {
int v = e[i].to;
if(v != fa) {
dfs1(u, v);
sons[u] += sons[v];
down[u] += down[v] + sons[v];
}
}
}
void dfs2(int fa, int u) {
for(int i = head[u]; ~i; i = e[i].next) {
int v = e[i].to;
if(v != fa) {
up[v] = up[u] + (n - sons[u]) + (sons[u] - sons[v]) + (down[u] - down[v] - sons[v]);
dfs2(u, v);
}
}
}
int main() {
scanf("%d", &n);
memset(head, -1, sizeof head);
for(int i = 1; i < n; i++) {
int u, v;
scanf("%d%d", &u, &v);
addedge(u, v);
addedge(v, u);
}
dfs1(0, 1);
dfs2(0, 1);
for(int i = 1; i <= n; i++) {
printf("%lld\n", up[i] + down[i]);
}
return 0;
}

51Nod - 1405 树的距离之和(树形DP)的更多相关文章

  1. 51nod 1405 树的距离之和 树形dp

    1405 树的距离之和 基准时间限制:1 秒 空间限制:131072 KB   收藏  关注 给定一棵无根树,假设它有n个节点,节点编号从1到n, 求任意两点之间的距离(最短路径)之和. Input ...

  2. 51Nod 1405 树的距离之和(dp)

    1405 树的距离之和 基准时间限制:1 秒 空间限制:131072 KB 分值: 40 难度:4级算法题  收藏  关注 给定一棵无根树,如果它有n个节点,节点编号从1到n, 求随意两点之间的距离( ...

  3. 51Nod 1405 树的距离之和 (树dp)

    题目链接:http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1405 中文题面不解释了,两次dfs,第一次自下向上,第二次自上 ...

  4. 51nod 1405 树的距离之和(dfs)

    http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1405 题意: 思路: 先求出所有点到根节点的距离,需要维护每棵子树的大小 ...

  5. 51 nod 1405 树的距离之和

    1405 树的距离之和 基准时间限制:1 秒 空间限制:131072 KB 分值: 40 难度:4级算法题   给定一棵无根树,假设它有n个节点,节点编号从1到n, 求任意两点之间的距离(最短路径)之 ...

  6. [51NOD1405] 树的距离之和(树DP)

    题目链接:http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1405 (1)我们给树规定一个根.假设所有节点编号是0-(n-1 ...

  7. BZOJ5123 线段树的匹配(树形dp)

    线段树的任意一棵子树都相当于节点数与该子树相同的线段树.于是假装在树形dp即可,记忆化搜索实现,有效状态数是logn级别的. #include<iostream> #include< ...

  8. 1113: [视频]树形动态规划(TreeDP)8:树(tree)(树形dp状态设计总结)

    根据最近做的几道树形dp题总结一下规律.(从这篇往前到洛谷 P1352 ) 这几道题都是在一颗树上,然后要让整棵树的节点或边 满足一种状态.然后点可以影响到相邻点的这种状态 然后求最小次数 那么要从两 ...

  9. [CEOI2007]树的匹配Treasury(树形DP+高精)

    题意 给一棵树,你可以匹配有边相连的两个点,问你这棵树的最大匹配时多少,并且计算出有多少种最大匹配. N≤1000,其中40%的数据答案不超过 108 题解 显然的树形DP+高精. 这题是作为考试题考 ...

随机推荐

  1. python2.7写入文件时指定编码为utf-8

    python3.0可以这样写 f = open('ufile.log', 'w', 'utf-8')   但在python2.7中open()没有编码参数,如上那样写会报错,可以使用如下模块 impo ...

  2. leetcode_day03

    https://leetcode-cn.com/problems/container-with-most-water/ 题目:盛水最多的容器 给定 n 个非负整数 a1,a2,...,an,每个数代表 ...

  3. 斯坦福大学CS231n简要笔记和课后作业

    笔记目录: 1. CS231n--图像分类(KNN实现) 2. 待更新... 3. 4.

  4. JSP/Servlet Web 学习笔记 DayFive

    ServletConfig <只对当前Servlet有效> (1)在Web容器初始化Servlet实例时,都会为这个Servlet准备一个唯一的ServletConfig实例(俗称Serv ...

  5. iPhone新建项目不能全屏

    上个周做项目的时候,发现新建了一个项目不能全屏.伤透了我的脑筋,然后又请教了团队里其他两个大牛帮我搞定了这个问题. 虽然是搞定了,但也看的出大牛也是云里雾里.歪打正着解决的. 今天又想新做个项目,这个 ...

  6. abp ef codefirst 设置默认值

    public partial class tableIsWaringfiled : DbMigration { public override void Up() { //设置默认值为true Add ...

  7. 物联网第一次作业--我眼中的物联网——从认识RFID开始

    无线射频识别技术(Radio FrequencyIdentification,简称:RFID)是一种非接触式的自动识别技术,其基本原理是利用射频信号和空间耦合(电感或电磁耦合)或雷达反射的传输特性,实 ...

  8. 关于usr/bin/ld: cannot find -lxxx问题总结(Qt编译错误cannot find -lGL)

    决定终结这个问题!(网上要想找到完整的解答实在太难了) http://blog.sciencenet.cn/blog-676535-541444.html 前两天手贱,把虚拟机玩崩溃了,只好重装虚拟机 ...

  9. 【bzoj1179】[Apio2009]Atm Tarjan缩点+Spfa最长路

    题目描述 输入 第一行包含两个整数N.M.N表示路口的个数,M表示道路条数.接下来M行,每行两个整数,这两个整数都在1到N之间,第i+1行的两个整数表示第i条道路的起点和终点的路口编号.接下来N行,每 ...

  10. 物理和虚拟兼容性RDM的区别

    Difference between Physical compatibility RDMs and Virtual compatibility RDMs (2009226) Purpose This ...