投影矩阵、最小二乘法和SVD分解
投影矩阵广泛地应用在数学相关学科的各种证明中,但是由于其概念比较抽象,所以比较难理解。这篇文章主要从最小二乘法的推导导出投影矩阵,并且应用SVD分解,写出常用的几种投影矩阵的形式。
问题的提出
已知有一个这样的方程组:
\[Ax=b\]
其中,\(A \in R^{m \times n},x,b \in R^n\)
- 当\(m=n\)时,且\(rank(A)=n\)时,这是一个适定方程组,有唯一解\(x=A^{-1}b\)
- 当\(m<n\)时,或者\(rank(A)<n\)时,这是一个欠定方程组,有无穷多个解。对于这种情况,我们使用\(ran(A)\)中与\(b\)距离最近的向量对应的\(x\)作为最小二乘解。而相应的\(ran(A)\)中的这个向量就是\(b\)在空间\(ran(A)\)中的投影。
最小二乘法
几何解法

如上图所示,\(b\)不在\(ran(A)\)中,\(Ax_0\)是\(ran(A)\)空间中对\(b\)在欧几里得范数下的最好估计。此时\[\forall x \in {R^n},\left\langle {Ax,b - A{x_0}} \right\rangle = 0\]
等价于
\[{x^T}{A^T}(b - A{x_0}) = 0\]
由于x的任意性,所以
\[{A^T}(b - A{x_0}) = 0\]
整理得
\[{x_0} = {({A^T}A)^{ - 1}}{A^T}b = {A^\dagger }b\]
其中\({A^\dagger } = {({A^T}A)^{ - 1}}{A^T}\)称为A的伪逆。
数值解法
原问题等价于
\[\min ||Ax - b||_2^2\]
记$ f(x)=||Ax-b||_2^2=(Ax-b)^T(Ax-b)=x^TA^T A x-2 b^T A x + b^Tb$,对x求导得,
\[\nabla f = 2({A^T}Ax - {A^T}b) = 0\]
解得,
\[{x} = {({A^T}A)^{ - 1}}{A^T}b = {A^\dagger }b\]
投影矩阵
对最小二乘解两边同时乘以A,就是对应的投影向量,即
\[{Ax} = {A({A^T}A)^{ - 1}}{A^T}b=Pb\]
那么\(P={A({A^T}A)^{ - 1}}{A^T}\)就是将\(b\)投影到\(ran(A)\)的投影矩阵。因为
\[P^T={A({A^T}A)^{ - 1}}{A^T}=P,P^2=P\]
满足投影矩阵的定义。
所以\(ran(A)\)对应的投影矩阵为
\[P={A({A^T}A)^{ - 1}}{A^T}\]
SVD分解下的投影矩阵
秩为r的矩阵A的SVD分解为\(A = U\Sigma {V^T} \in R^{m \times n}\)。其中,
\[U = [{U_r}|{\tilde U_r}],V = [{V_r}|{\tilde V_r}]\]
那么,带入公式可以得到
\(V_r V_r^T\)是\(ran(A^T)={null(A)}^\bot\)空间的投影矩阵
\(U_r U_r^T\)是\(ran(A)\)空间的投影矩阵
对于\(\forall x \in R^n\),有
\[ \left\langle {V_r V_r^T x,\tilde V_r {\tilde V_r}^T x} \right\rangle =x^T V_r V_r^T \tilde V_r {\tilde V_r}^T x=0\]
所以,\(\tilde V_r {\tilde V_r}^T\)是\(null(A)\)空间的投影矩阵
同理,\(\tilde U_r {\tilde U_r}^T\)是\(null(A^T)={ran(A)}^\bot\)空间的投影矩阵
投影矩阵、最小二乘法和SVD分解的更多相关文章
- 机器学习中的矩阵方法04:SVD 分解
前面我们讲了 QR 分解有一些优良的特性,但是 QR 分解仅仅是对矩阵的行进行操作(左乘一个酉矩阵),可以得到列空间.这一小节的 SVD 分解则是将行与列同等看待,既左乘酉矩阵,又右乘酉矩阵,可以得出 ...
- 矩阵的SVD分解
转自 http://blog.csdn.net/zhongkejingwang/article/details/43053513(实在受不了CSDN的广告) 在网上看到有很多文章介绍SVD的,讲的也都 ...
- SVD分解及线性最小二乘问题
这部分矩阵运算的知识是三维重建的数据基础. 矩阵分解 求解线性方程组:,其解可以表示为. 为了提高运算速度,节约存储空间,通常会采用矩阵分解的方案,常见的矩阵分解有LU分解.QR分解.Cholesky ...
- gemm() 与 gesvd() 到矩阵求逆(inverse)(根据 SVD 分解和矩阵乘法求矩阵的逆)
可逆方阵 A 的逆记为,A−1,需满足 AA−1=I. 在 BLAS 的各种实现中,一般都不会直接给出 matrix inverse 的直接实现,其实矩阵(方阵)的逆是可以通过 gemm()和gesv ...
- SVD分解的理解[转载]
http://www.bfcat.com/index.php/2012/03/svd-tutorial/ SVD分解(奇异值分解),本应是本科生就掌握的方法,然而却经常被忽视.实际上,SVD分解不但很 ...
- SVD分解技术详解
版权声明: 本文由LeftNotEasy发布于http://leftnoteasy.cnblogs.com, 本文可以被全部的转载或者部分使用,但请注明出处,如果有问题,请联系wheeleast@gm ...
- SVD分解 解齐次线性方程组
SVD分解 只有非方阵才能进行奇异值分解 SVD分解:把矩阵分解为 特征向量矩阵+缩放矩阵+旋转矩阵 定义 设\(A∈R^{m×n}\),且$ rank(A) = r (r > 0) $,则矩阵 ...
- 机器学习之SVD分解
一.SVD奇异值分解的定义 假设是一个的矩阵,如果存在一个分解: 其中为的酉矩阵,为的半正定对角矩阵,为的共轭转置矩阵,且为的酉矩阵.这样的分解称为的奇异值分解,对角线上的元素称为奇异值,称为左奇异矩 ...
- opencv2.4中SVD分解的几种调用方法
原帖地址: http://blog.sina.com.cn/s/blog_6109b5d00101ag7a.html 在摄影测量和计算机视觉中,考虑最优解问题时,经常要用到SVD分解.奇异 ...
随机推荐
- 受防火墙影响,win7的IPV6经常Ping不通,需要手动放行
在路由器上面设置了IPV6隧道,路由自动给每台机器分配了IPV6地址. 然后总是发现过会IPV6就ping不通了,IPV6的网站也打不开. 经从次实验发现:关闭防火墙后立马就通了,打开防火墙后,过会又 ...
- do{}while(0)与CC_BREAK_IF的绝妙搭配
从一開始认为没有必要,到认为很好用.我经历了大概两个月的时间,以下来总结一下什么情况下使用这样的结构吧. 第一种情况:当载入文件的时候,假设载入文件失败,须要报错的时候. 当前,能够用try{}cat ...
- prometheus监控方案
简介 prometheus 是一个开源的系统监控和告警的工具包,其采用pull方式采集时间序列,通过http协议传输. 架构 每个应用都通过javaagent向外提供一个http服务暴露出自己的JMX ...
- 使用js生成下拉列表项
在项目中经常会使用到一个简单的表单元素,那就是下拉列表.但是由于企业的列表项并不是固定的,因此列表项的内容需要到数据库或者接口中取,因此怎样获取,并且能应用到 多个相似的下拉列表就需要思考一下. 我这 ...
- ImportError: No module named '_sqlite3'
问题: Python 3.5.1 报错如下 Traceback (most recent call last): File "manage.py", line 16, in < ...
- 搜索maven的库中某个支持库的的最新版本
首先放网址(建议挂个vpn): maven库中心:http://search.maven.org/ jcenter库中心:https://bintray.com/bintray/jcenter 接下来 ...
- CSU 1663: Tree(树链剖分)
1663: Tree Time Limit: 5 Sec Memory Limit: 128 MB Submit: 26 Solved: 11 [Submit][id=1663"> ...
- cxf 创建动态webService
D:\developTools\apache-cxf-2.5.2\samples\wsdl_first_dynamic_client CXF 方法 cxf方法 serviceInfo.getBindi ...
- Cobbler部署之FAQ处理
Cobbler报错处理 通过cobbler check检查出现的报错 红色标注为报错关键信息 9.1 报错一 # cobbler check httpd does not appear to be r ...
- 关于移动端border 1像素在不同分辨率下边显示粗细不一样的处理
最近开发发现一个很有趣的问题 就是我如果给一个元素加上一个像素的 border 在不同的分辨率的情况下显示的不同 在高清屏幕(尤其是ios 喽 不鄙视国产) 据说在6plus下会变成3px 这个我 ...