P3768 【简单的数学题】
\(Ans=\sum ^{n}_{i=1}\sum ^{n}_{j=1}ijgcd(i,j)\)###
\(=\sum ^{n}_{i=1}\sum ^{n}_{j=1}ij\sum _{k|i,k|j} φ(k)\)###
\(=\sum ^{n}_{k=1} φ(k) \sum _{k|i}\sum _{k|j}ij\)###
\(=\sum ^{n}_{k=1}\varphi (k) k^{2} (\sum ^{n/k}_{i=1}i)^{2}\)###
\(=\sum ^{n}_{k=1}\varphi (k) k^{2} \sum ^{n/k}_{i=1}i^{3}\)###
\(n<=1e10\)杜教筛筛 \(\varphi (k) k^{2}\)
#include<bits/stdc++.h>
#include<tr1/unordered_map>
using namespace std;
typedef long long LL;
const int maxn=5000000+9;
inline LL Read(){
LL x=0,f=1; char c=getchar();
while(c<'0'||c>'9'){
if(c=='-') f=-1; c=getchar();
}
while(c>='0'&&c<='9')
x=(x<<3)+(x<<1)+c-'0',c=getchar();
return x*f;
}
LL n,p,inv;
int phi[maxn],prime[maxn];
LL sum[maxn];
bool visit[maxn];
inline LL Pow(LL base,LL b){
LL a=1;
while(b){
if(b&1)
a=(a*base)%p;
base=(base*base)%p;
b>>=1;
}
return a;
}
inline void F_phi(int N){
inv=Pow(6,p-2);
phi[1]=1; int tot(0);
for(int i=2;i<=N;++i){
if(!visit[i]){
phi[i]=i-1;
prime[++tot]=i;
}
for(int j=1;j<=tot&&i*prime[j]<=N;++j){
visit[i*prime[j]]=true;
if(i%prime[j]==0){
phi[i*prime[j]]=phi[i]*prime[j];
break;
}
else
phi[i*prime[j]]=phi[i]*phi[prime[j]];
}
}
for(int i=1;i<=N;++i)
sum[i]=(sum[i-1]+1ll*i*i%p*phi[i]%p)%p;
//for(int i=1;i<=2000;++i)
// printf("%lld ",sum[i]);printf("\n");
}
tr1::unordered_map<LL,LL> w;
inline LL S2(LL x){
x%=p;
return x*(x+1)%p*(2*x+1)%p*inv%p;
}
LL S3(LL x){
x%=p;
return (x*(x+1)/2)%p*((x*(x+1)/2)%p)%p;
}
LL Calc(LL now){
if(now<=5000000)
return sum[now];
if(w[now])
return w[now];
LL num=S3(now);
for(LL l=2,r;l<=now;l=r+1){
r=now/(now/l);
num=(num-Calc(now/l)*(S2(r)-S2(l-1)+p)%p+p)%p;
}
return w[now]=num;
}
int main(){
p=Read(),n=Read();
F_phi(5000000);
LL ans(0);
for(LL l=1,r;l<=n;l=r+1){
r=n/(n/l);
ans=(ans+S3(n/l)*((Calc(r)-Calc(l-1)+p)%p))%p;
}
printf("%lld",ans);
return 0;
}/*
998244353 2000
883968974
*/
P3768 【简单的数学题】的更多相关文章
- 洛谷 P3768 简单的数学题 解题报告
P3768 简单的数学题 题目描述 由于出题人懒得写背景了,题目还是简单一点好. 输入一个整数\(n\)和一个整数\(p,\)你需要求出\((\sum_{i=1}^n\sum_{j=1}^n ijgc ...
- Luogu P3768 简单的数学题
非常恶心的一道数学题,推式子推到吐血. 光是\(\gcd\)求和我还是会的,但是多了个\(ij\)是什么鬼东西. \[\sum_{i=1}^n\sum_{j=1}^nij\gcd(i,j)=\sum_ ...
- 【刷题】洛谷 P3768 简单的数学题
题目描述 由于出题人懒得写背景了,题目还是简单一点好. 输入一个整数n和一个整数p,你需要求出(\(\sum_{i=1}^n\sum_{j=1}^n ijgcd(i,j))~mod~p\),其中gcd ...
- P3768 简单的数学题 杜教筛+推式子
\(\color{#0066ff}{ 题目描述 }\) 由于出题人懒得写背景了,题目还是简单一点好. 输入一个整数n和一个整数p,你需要求出(\(\sum_{i=1}^n\sum_{j=1}^n ij ...
- P3768 简单的数学题(莫比乌斯反演)
[题目链接] https://www.luogu.org/problemnew/show/P3768 [题目描述] 求 \(\sum_{i=1}^{n}\sum_{j=1}^{n}i* j* gcd( ...
- 【Luogu】P3768简单的数学题(杜教筛)
题目链接 emm标题全称应该叫“莫比乌斯反演求出可狄利克雷卷积的公式然后卷积之后搞杜教筛” 然后成功地困扰了我两天qwq 我们从最基本的题意开始,一步步往下推 首先题面给出的公式是$\sum\limi ...
- 洛谷 - P3768 - 简单的数学题 - 欧拉函数 - 莫比乌斯反演
https://www.luogu.org/problemnew/show/P3768 \(F(n)=\sum\limits_{i=1}^{n}\sum\limits_{j=1}^{n}ijgcd(i ...
- 洛谷 P3768 简单的数学题
https://www.luogu.org/problemnew/show/P3768 化简一下式子,就是$\sum_{d=1}^ncalc(d)d^2\varphi(d)$ 其中$calc(d)=\ ...
- 洛谷P3768 简单的数学题
解: 神奇的一批......参观yyb巨神的博客. 大致思路就是第一步枚举gcd,发现后面有个限制是gcd=1,用反演,得到的F(x)是两个等差数列求积. 然后发现有个地方我们除法的除数是乘积,于是换 ...
- [P3768]简单的数学题
Description: 求出\((\sum_{i=1}^n \sum_{j=1}^n ij\ gcd\ (i,j)) mod\ p\) Hint: \(n<=10^{10}\) Soluti ...
随机推荐
- 【SpringMVC学习04】Spring、MyBatis和SpringMVC的整合
前两篇springmvc的文章中都没有和mybatis整合,都是使用静态数据来模拟的,但是springmvc开发不可能不整合mybatis,另外mybatis和spring的整合我之前学习mybati ...
- bzoj 2458: [BeiJing2011]最小三角形 题解
[前言]话说好久没有写题解了.到暑假了反而忙.o(╯□╰)o [原题] 2458: [BeiJing2011]最小三角形 Time Limit: 10 Sec Memory Limit: 128 M ...
- hbase和mapreduce开发 WordCount
代码: /** * hello world by world 测试数据 * @author a * */ public class DefinedMapper extends Mapper<Lo ...
- [转载]Axis2 and CXF的比较
在Celtix 和XFire 宣布合并的同年,另一个著名开源Web 服务框架Axis 的后继者Axis2 也诞生了.Axis2 并非Axis 的2.0 版,而是完全重写了Axis 的新项目.作为功能和 ...
- 2018年EI收录中文期刊目录【转】
[转]2018年EI收录中文期刊目录 Elsevier官网于2018年1月1日更新了EI Compendex目录,共收录中文期刊158种,其中新增期刊5种. 序号 中文刊名 收录情况 1 声学学报 保 ...
- 《Lucene in Action 第二版》第4章节 学习总结 -- Lucene中的分析
通过第四章的学习,可以了解lucene的分析过程是怎样的,并且可以学会如何使用lucene内置分析器,以及自定义分析器.下面是具体总结 1. 分析(Analysis)是什么? 在lucene中,分析就 ...
- 使用MongoDB 记录业务日志
最近公司有个需求,要对业务日志进行记录并根据日志排查问题,以前都是使用log4net之类的日志组件来记录到文件,这种方式已经不能满足业务的需要,因为日志文件会很大,即使进行分割后,查找也是很不方便,何 ...
- 什么是 Service Mesh
作者|敖小剑 微服务方兴未艾如火如荼之际,在 spring cloud 等经典框架之外,Service Mesh 技术正在悄然兴起.到底什么是 Service Mesh,它的出现能带来什么,又能改变什 ...
- JQ中find()与filter()的区别
刚开始学的时候,对于find()和filter()有点理不清楚,下面通过案例相信就可以很快的区分清楚 以下是代码 find弹出的是 filter()弹出的是 下面我们添加div的class是rain ...
- 程序员之---C语言细节19(来找茬,由/* */ 引起的凝视错误)
主要内容:由/* */ 引起的凝视错误 有4处凝视错误 #include <stdio.h> #define N 10 //使用以下宏定义的凝视 #define BSC // #defin ...