洛谷P3413 SAC#1 - 萌数(数位dp)
题目描述
辣鸡蒟蒻SOL是一个傻逼,他居然觉得数很萌!
好在在他眼里,并不是所有数都是萌的。只有满足“存在长度至少为2的回文子串”的数是萌的——也就是说,101是萌的,因为101本身就是一个回文数;110是萌的,因为包含回文子串11;但是102不是萌的,1201也不是萌的。
现在SOL想知道从l到r的所有整数中有多少个萌数。
由于答案可能很大,所以只需要输出答案对1000000007(10^9+7)的余数。
输入输出格式
输入格式:
输入包含仅1行,包含两个整数:l、r。
输出格式:
输出仅1行,包含一个整数,即为答案。
输入输出样例
说明
记n为r在10进制下的位数。
对于10%的数据,n <= 3。
对于30%的数据,n <= 6。
对于60%的数据,n <= 9。
对于全部的数据,n <= 1000,l < r。
题解
我数位dp门都没入呢……
别指望我能讲啥,自己看代码理解吧……
只要注意一下下面代码里的$Pre$和$per$,一个表示前一个数,一个表示前两个数,因为回文数只会有$aba$和$aa$两种类型,然后只要注意特判一下当前位置是$1$的就行了
//minamoto
#include<iostream>
#include<cstring>
#include<cstdio>
#define ll long long
using namespace std;
const int N=,mod=1e9+;
char s1[N],s2[N];ll dp[N][N][];int a[N];
ll dfs(int pos,int Pre,int per,int t,int k,int flag){
if(pos<=) return t;
if(!flag&&~dp[pos][Pre][t]) return dp[pos][Pre][t];
int end=flag?a[pos]:;ll res=;
for(int i=;i<=end;++i)
(res+=dfs(pos-,i,k?Pre:-,t||(i==Pre&&k)||(i==per&&k),k||i,flag&&(i==end)))%=mod;
if(!flag&&k&&~per) dp[pos][Pre][t]=res;
return res;
}
int solve(char *s){
int len=,slen=strlen(s+);
while(slen) a[++len]=s[slen--]-'';
memset(dp,-,sizeof(dp));
return dfs(len,-,-,,,);
}
int main(){
scanf("%s%s",s1+,s2+);
int len=strlen(s1+);
if(s1[len]!=) s1[len]-=;
else s1[len-]-=,s1[len]='';
printf("%d\n",(solve(s2)-solve(s1)+mod)%mod);
return ;
}
洛谷P3413 SAC#1 - 萌数(数位dp)的更多相关文章
- 洛谷P3413 SAC#1 - 萌数 题解 数位DP
题目链接:https://www.luogu.com.cn/problem/P3413 题目大意: 定义萌数指:满足"存在长度至少为2的回文子串"的数. 求区间 \([L,R]\) ...
- [洛谷P3413]SAC#1 - 萌数
题目大意:求$[l,r](0\leqslant l<r< 10^{1001})$中存在长度至少为$2$的回文串的数字数 题解:数位$DP$,发现如果有回文串,若长度为偶数,一定有两个相同的 ...
- 洛谷 P3413 SAC#1 - 萌数
题意简述 求l~r之间存在长度至少为2的回文子串的正整数的个数 题解思路 数位DP 注意到有偶数长度的回文串必有长度为2的回文串,有奇数长度的回文串必有长度为3的回文串 所以只需判断与前一位,前两位是 ...
- LUOGU P3413 SAC#1 - 萌数(数位dp)
传送门 解题思路 首先这道题如果有两个以上长度的回文串,那么就一定有三个或两个的回文串,所以只需要记录一下上一位和上上位填的数字就行了.数位\(dp\),用记忆化搜索来实现.设\(f[i][j][k] ...
- P3413 SAC#1 - 萌数
题目 洛谷 数位动规用爆搜真好玩 做法 含有回文串实际我们仅需判断是否有\(2/3\)回文串 \(Dfs(now,num,pre,ly,lead,prel,top)\): 在第\(now\)位 \(n ...
- 洛谷CF809C Find a car(数位DP)
洛谷题目传送门 通过瞪眼法发现,\(a_{i,j}=(i-1)\text{ xor }(j-1)+1\). 二维差分一下,我们只要能求\(\sum\limits_{i=0}^x\sum\limits_ ...
- 洛谷P2606 [ZJOI2010]排列计数(数位dp)
题目描述 称一个1,2,...,N的排列P1,P2...,Pn是Magic的,当且仅当2<=i<=N时,Pi>Pi/2. 计算1,2,...N的排列中有多少是Magic的,答案可能很 ...
- 洛谷$P$2235 $Kathy$函数 $[HNOI2002]$ 数位$dp$
正解:数位$dp$ 解题报告: 传送门$qwq$ $HNOI$的题从02年就这么神了嘛$QAQ$,,, 嗷对了这题如果看出了一个结论就是个数位$dp$板子,,,?但是结论很神我$jio$得挺难看出来的 ...
- 洛谷P2602 [ZJOI2010]数字计数 题解 数位DP
题目链接:https://www.luogu.com.cn/problem/P2602 题目大意: 计算区间 \([L,R]\) 范围内 \(0 \sim 9\) 各出现了多少次? 解题思路: 使用 ...
随机推荐
- (转)C#用Linq实现DataTable的Group by数据统计
本文转载自:http://www.cnblogs.com/sydeveloper/archive/2013/03/29/2988669.html 1.用两层循环计算,前提条件是数据已经按分组的列排好序 ...
- 用nfs挂载内核时出错 ERROR: Cannot umount的解决办法
SMDK2440 # nfs 30000000 192.168.1.106:/work/nfs_root/uImage ERROR: resetting ...
- 数据校验(3)--demo2---bai
input_user.jsp <%@ page language="java" import="java.util.*" pageEncoding=&qu ...
- Python-使用unrar库时Couldn't find path to unrar library的解决办法
在Pycharm安装完unrar后,还要安装rar官方的库 不然运行的时候会抛出Couldn't find path to unrar library的错误 Windows: 下载rarlib的库文件 ...
- hibernate 事务的隔离级别
脏读不可重复读幻读可序列化(符合事务的四个特性的正常情况 ) 解释: 脏读:事务A对数据1做了更新,但是还没有来得及提交 此时事务B对数据1进行了查询获得了事务A更新后的数据, 但是事务A因为一些原因 ...
- python 函数相关定义
1.为什么要使用函数? 减少代码的冗余 2.函数先定义后使用(相当于变量一样先定义后使用) 3.函数的分类: 内置函数:python解释器自带的,直接拿来用就行了 自定义函数:根据自己的需求自己定义的 ...
- 链接ssh失败问题
Starting sshd:/var/empty/sshd must be owned by root and not group or world-writable. ...
- LAMP 3.2 mysql登陆
mysql 服务启动时,不仅会监听 IP:Port,还会监听一个 socket,我们安装的 mysql 是监听在/tmp/mysql.sock.如果 php 是在本地,那么 php 和 mysql 通 ...
- Navicat断网时连不上数据库
最近安装了破解的Navicat,在有网的条件下可以连接本地安装的MySQL数据库,但断网之后就不可以,如下: 于是上网查资料,发现原因为: localhost可以看成是一个域名,在一大部分情况下,它能 ...
- DAY9-python并发之多线程
一 threading模块介绍 multiprocess模块的完全模仿了threading模块的接口,二者在使用层面,有很大的相似性,因而不再详细介绍 官网链接:https://docs.python ...