3.1  矩阵和向量

    如图:这个是 4×2 矩阵,即 4 行 2 列,如 m 为行,n 为列,那么 m×n 即 4×2

  

    矩阵的维数即行数×列数 矩阵元素(矩阵项):

  

    

    Aij 指第 i 行,第 j 列的元素。 向量是一种特殊的矩阵,讲义中的向量一般都是列向量,如

    如下图为 1 索引向量和 0 索引向量,左图为 1 索引向量,右图为 0 索引向量,一般我们用 1 索引向量。

  

  

  3.2  加法和标量乘法

    矩阵的加法:行列数相等的可以加。

  

    矩阵的乘法:每个元素都要乘

  

    组合算法也类似。

  3.3  矩阵向量乘法

    矩阵和向量的乘法如图:m×n 的矩阵乘以 n×1 的向量,得到的是 m×1 的向量

  

    算法举例:

  

  3.4  矩阵乘法

    矩阵乘法:

    m×n 矩阵乘以 n×o 矩阵,变成 m×o 矩阵。 如果这样说不好理解的话就举一个例子来说明一下,比如说现在有两个矩阵 A 和 B,那

    么它们的乘积就可以表示为图中所示的形式。

  

  3.5  矩阵乘法的性质

    矩阵乘法的性质: 矩阵的乘法不满足交换律:A×B≠B×A

    矩阵的乘法满足结合律。即:A×(B×C)=(A×B)×C

  

    单位矩阵:在矩阵的乘法中,有一种矩阵起着特殊的作用,如同数的乘法中的 1,我们称 这种矩阵为单位矩阵.

    它是个方阵,一般用 I 或者 E 表示,本讲义都用 I 代表单位矩阵,从 左上角到右下角的对角线(称为主对角线)上的元素均为 1, 以外全都为 0。如:

  

  3.6  逆、转置

    矩阵的逆:如矩阵 A 是一个 m×m 矩阵(方阵),如果有逆矩阵,则:

  

    我们一般在 OCTAVE 或者 MATLAB 中进行计算矩阵的逆矩阵。

    矩阵的转置:设 A 为 m×n 阶矩阵(即 m 行 n 列),第 i 行 j 列的元素是 a(i,j),即: A=a(i,j)

    定义 A 的转置为这样一个 n×m 阶矩阵 B,满足 B=a(j,i),即 b (i,j)=a (j,i)(B 的第 i 行第j 列元素是 A 的第 j 行第 i 列元素),

    记 AT=B。(有些书记为 A'=B)直观来看,将 A 的所有元素绕着一条从第 1 行第 1 列元素出发的右下方 45 度的射线作 镜面反转,即得到 A 的转置。

  

    例: 矩阵的转置基本性质:

  

    matlab 中矩阵转置:直接打一撇,x=y'。

机器学习第3课:线性代数回顾(Linear Algebra Review)的更多相关文章

  1. 斯坦福第三课:线性代数回顾(Linear Algebra Review)

    3.1  矩阵和向量 3.2  加法和标量乘法 3.3  矩阵向量乘法 3.4  矩阵乘法 3.5  矩阵乘法的性质 3.6  逆.转置 3.1  矩阵和向量 如图:这个是 4×2 矩阵,即 4 行  ...

  2. Ng第三课:线性代数回顾(Linear Algebra Review)

    3.1  矩阵和向量 3.2  加法和标量乘法 3.3  矩阵向量乘法 3.4  矩阵乘法 3.5  矩阵乘法的性质 3.6  逆.转置 3.1  矩阵和向量 如图:这个是 4×2 矩阵,即 4 行  ...

  3. 线性代数导论 | Linear Algebra 课程

    搞统计的线性代数和概率论必须精通,最好要能锻炼出直觉,再学机器学习才会事半功倍. 线性代数只推荐Prof. Gilbert Strang的MIT课程,有视频,有教材,有习题,有考试,一套学下来基本就入 ...

  4. 【线性代数】Linear Algebra Big Picture

    Abstract: 通过学习MIT 18.06课程,总结出的线性代数的知识点相互依赖关系,后续博客将会按照相应的依赖关系进行介绍.(2017-08-18 16:28:36) Keywords: Lin ...

  5. machine learning (3)---Linear Algebra Review

    Matrix Vector Multiplication 左边的矩阵向量相乘法比右边的更简洁而且计算高效 Matrix Matrix Multiplication 可以同时计算12个结果(4个房子面积 ...

  6. 【原】Coursera—Andrew Ng机器学习—课程笔记 Lecture 3_Linear Algebra Review

    Lecture3   Linear Algebra Review 线性代数回顾 3.1 矩阵和向量3.2 加法和标量乘法3.3 矩阵向量乘法3.4 矩阵乘法3.5 矩阵乘法的性质3.6 逆.转置 3. ...

  7. PYTHON替代MATLAB在线性代数学习中的应用(使用Python辅助MIT 18.06 Linear Algebra学习)

    前言 MATLAB一向是理工科学生的必备神器,但随着中美贸易冲突的一再升级,禁售与禁用的阴云也持续笼罩在高等学院的头顶.也许我们都应当考虑更多的途径,来辅助我们的学习和研究工作. 虽然PYTHON和众 ...

  8. 算法库:基础线性代数子程序库(Basic Linear Algebra Subprograms,BLAS)介绍

    调试DeepFlow光流算法,由于作者给出的算法是基于Linux系统的,所以要在Windows上运行,不得不做大量的修改工作.移植到Windows平台,除了一些头文件找不到外,还有一些函数也找不到.这 ...

  9. 个案排秩 Rank (linear algebra) 秩 (线性代数)

    非叫“秩”不可,有秩才有解_王治祥_新浪博客http://blog.sina.com.cn/s/blog_8e7bc4f801012c23.html 我在一个大学当督导的时候,一次我听一位老师给学生讲 ...

随机推荐

  1. [poj] 3422 Kaka's Matrix Travels || 最小费用最大流

    原题 给一个N*N的方阵,从[1,1]到[n,n]走K次,走过每个方格加上上面的数,然后这个格上面的数变为0.求可取得的最大的值. 要求最大值,所以把边权全为负跑最小费用即可.因为只有第一次经过该点的 ...

  2. 7月14号day6总结

    今天学习过程和总结 IOC和DIO IOC相当于一个容器,在容器中加注解.接口存在意义依赖注入.4个注解都行,依赖注入只能发生在IOC容器里, pring IOC 容器可以管理Bean 的生命周期,S ...

  3. yum升级kernel

    # uname -a Linux host -.el6.x86_64 # SMP Fri May :: BST x86_64 x86_64 x86_64 GNU/Linux # cat /etc/re ...

  4. xCode中去除“Implicit declaration of function 'sysctl' is invalid in C99” 警告

    http://blog.csdn.net/dreambegin/article/details/8609121 一般出现该问题是因为通过C调用了unix/linux 底层接口,所以需要调整c语言的编译 ...

  5. VMWare虚拟机如何与主机共享文件夹(最容易看懂的讲解)附图~

    http://wenku.baidu.com/view/54ab9e19227916888486d776.html 新建好虚拟机并安装好系统后,在编辑虚拟机设置--选项进行以下设置: 点添加 选择你要 ...

  6. Windows基础-实时录音程序(WaveXXX)

    写在前面 一开始是打算用这个老接口做讯飞语音识别的程序,在转移到UWP时发现,这玩意在Windows Runtime中屏蔽(弃用)了,将来会更新使用WASAPI的程序 WaveRecorder类代码下 ...

  7. git的使用01

    直接下载安装git,这里就不演示了,如果安装成功,在桌面任意空白处单击鼠标右键,会多出两个选项 Git Gui Here和Git Bash Here,我们一般使用git bash here 右键之后点 ...

  8. MSSQL-字符串分离与列记录合并成一行混合使用

    一般我们在数据库的表字段存储字典Id,如果有多个的话一般是用,或分隔符分隔(12,14),列表显示的时候是显示字典名,那如果要在数据库将字典Id转成用户看得懂的字典名,该怎么办呢? 我们这时候可以结合 ...

  9. POJ 2524 Ubiquitous Religions (并查集)

    Description 当今世界有很多不同的宗教,很难通晓他们.你有兴趣找出在你的大学里有多少种不同的宗教信仰.你知道在你的大学里有n个学生(0 < n <= 50000).你无法询问每个 ...

  10. 关于Date数据类型格式化的转换

    例如:   jsp页面读取数据库中日期格式的列时可能显示为1988-05-03 00:00:00 格式,但是我们不想要后面的00:00:00时间,只想要前面的年月日,那么该如何做出修改呢? 方法一:我 ...