机器学习第3课:线性代数回顾(Linear Algebra Review)
3.1 矩阵和向量
如图:这个是 4×2 矩阵,即 4 行 2 列,如 m 为行,n 为列,那么 m×n 即 4×2
矩阵的维数即行数×列数 矩阵元素(矩阵项):
Aij 指第 i 行,第 j 列的元素。 向量是一种特殊的矩阵,讲义中的向量一般都是列向量,如
如下图为 1 索引向量和 0 索引向量,左图为 1 索引向量,右图为 0 索引向量,一般我们用 1 索引向量。
3.2 加法和标量乘法
矩阵的加法:行列数相等的可以加。
矩阵的乘法:每个元素都要乘
组合算法也类似。
3.3 矩阵向量乘法
矩阵和向量的乘法如图:m×n 的矩阵乘以 n×1 的向量,得到的是 m×1 的向量
算法举例:
3.4 矩阵乘法
矩阵乘法:
m×n 矩阵乘以 n×o 矩阵,变成 m×o 矩阵。 如果这样说不好理解的话就举一个例子来说明一下,比如说现在有两个矩阵 A 和 B,那
么它们的乘积就可以表示为图中所示的形式。
3.5 矩阵乘法的性质
矩阵乘法的性质: 矩阵的乘法不满足交换律:A×B≠B×A
矩阵的乘法满足结合律。即:A×(B×C)=(A×B)×C
单位矩阵:在矩阵的乘法中,有一种矩阵起着特殊的作用,如同数的乘法中的 1,我们称 这种矩阵为单位矩阵.
它是个方阵,一般用 I 或者 E 表示,本讲义都用 I 代表单位矩阵,从 左上角到右下角的对角线(称为主对角线)上的元素均为 1, 以外全都为 0。如:
3.6 逆、转置
矩阵的逆:如矩阵 A 是一个 m×m 矩阵(方阵),如果有逆矩阵,则:
我们一般在 OCTAVE 或者 MATLAB 中进行计算矩阵的逆矩阵。
矩阵的转置:设 A 为 m×n 阶矩阵(即 m 行 n 列),第 i 行 j 列的元素是 a(i,j),即: A=a(i,j)
定义 A 的转置为这样一个 n×m 阶矩阵 B,满足 B=a(j,i),即 b (i,j)=a (j,i)(B 的第 i 行第j 列元素是 A 的第 j 行第 i 列元素),
记 AT=B。(有些书记为 A'=B)直观来看,将 A 的所有元素绕着一条从第 1 行第 1 列元素出发的右下方 45 度的射线作 镜面反转,即得到 A 的转置。
例: 矩阵的转置基本性质:
matlab 中矩阵转置:直接打一撇,x=y'。
机器学习第3课:线性代数回顾(Linear Algebra Review)的更多相关文章
- 斯坦福第三课:线性代数回顾(Linear Algebra Review)
3.1 矩阵和向量 3.2 加法和标量乘法 3.3 矩阵向量乘法 3.4 矩阵乘法 3.5 矩阵乘法的性质 3.6 逆.转置 3.1 矩阵和向量 如图:这个是 4×2 矩阵,即 4 行 ...
- Ng第三课:线性代数回顾(Linear Algebra Review)
3.1 矩阵和向量 3.2 加法和标量乘法 3.3 矩阵向量乘法 3.4 矩阵乘法 3.5 矩阵乘法的性质 3.6 逆.转置 3.1 矩阵和向量 如图:这个是 4×2 矩阵,即 4 行 ...
- 线性代数导论 | Linear Algebra 课程
搞统计的线性代数和概率论必须精通,最好要能锻炼出直觉,再学机器学习才会事半功倍. 线性代数只推荐Prof. Gilbert Strang的MIT课程,有视频,有教材,有习题,有考试,一套学下来基本就入 ...
- 【线性代数】Linear Algebra Big Picture
Abstract: 通过学习MIT 18.06课程,总结出的线性代数的知识点相互依赖关系,后续博客将会按照相应的依赖关系进行介绍.(2017-08-18 16:28:36) Keywords: Lin ...
- machine learning (3)---Linear Algebra Review
Matrix Vector Multiplication 左边的矩阵向量相乘法比右边的更简洁而且计算高效 Matrix Matrix Multiplication 可以同时计算12个结果(4个房子面积 ...
- 【原】Coursera—Andrew Ng机器学习—课程笔记 Lecture 3_Linear Algebra Review
Lecture3 Linear Algebra Review 线性代数回顾 3.1 矩阵和向量3.2 加法和标量乘法3.3 矩阵向量乘法3.4 矩阵乘法3.5 矩阵乘法的性质3.6 逆.转置 3. ...
- PYTHON替代MATLAB在线性代数学习中的应用(使用Python辅助MIT 18.06 Linear Algebra学习)
前言 MATLAB一向是理工科学生的必备神器,但随着中美贸易冲突的一再升级,禁售与禁用的阴云也持续笼罩在高等学院的头顶.也许我们都应当考虑更多的途径,来辅助我们的学习和研究工作. 虽然PYTHON和众 ...
- 算法库:基础线性代数子程序库(Basic Linear Algebra Subprograms,BLAS)介绍
调试DeepFlow光流算法,由于作者给出的算法是基于Linux系统的,所以要在Windows上运行,不得不做大量的修改工作.移植到Windows平台,除了一些头文件找不到外,还有一些函数也找不到.这 ...
- 个案排秩 Rank (linear algebra) 秩 (线性代数)
非叫“秩”不可,有秩才有解_王治祥_新浪博客http://blog.sina.com.cn/s/blog_8e7bc4f801012c23.html 我在一个大学当督导的时候,一次我听一位老师给学生讲 ...
随机推荐
- [poj] 3422 Kaka's Matrix Travels || 最小费用最大流
原题 给一个N*N的方阵,从[1,1]到[n,n]走K次,走过每个方格加上上面的数,然后这个格上面的数变为0.求可取得的最大的值. 要求最大值,所以把边权全为负跑最小费用即可.因为只有第一次经过该点的 ...
- 7月14号day6总结
今天学习过程和总结 IOC和DIO IOC相当于一个容器,在容器中加注解.接口存在意义依赖注入.4个注解都行,依赖注入只能发生在IOC容器里, pring IOC 容器可以管理Bean 的生命周期,S ...
- yum升级kernel
# uname -a Linux host -.el6.x86_64 # SMP Fri May :: BST x86_64 x86_64 x86_64 GNU/Linux # cat /etc/re ...
- xCode中去除“Implicit declaration of function 'sysctl' is invalid in C99” 警告
http://blog.csdn.net/dreambegin/article/details/8609121 一般出现该问题是因为通过C调用了unix/linux 底层接口,所以需要调整c语言的编译 ...
- VMWare虚拟机如何与主机共享文件夹(最容易看懂的讲解)附图~
http://wenku.baidu.com/view/54ab9e19227916888486d776.html 新建好虚拟机并安装好系统后,在编辑虚拟机设置--选项进行以下设置: 点添加 选择你要 ...
- Windows基础-实时录音程序(WaveXXX)
写在前面 一开始是打算用这个老接口做讯飞语音识别的程序,在转移到UWP时发现,这玩意在Windows Runtime中屏蔽(弃用)了,将来会更新使用WASAPI的程序 WaveRecorder类代码下 ...
- git的使用01
直接下载安装git,这里就不演示了,如果安装成功,在桌面任意空白处单击鼠标右键,会多出两个选项 Git Gui Here和Git Bash Here,我们一般使用git bash here 右键之后点 ...
- MSSQL-字符串分离与列记录合并成一行混合使用
一般我们在数据库的表字段存储字典Id,如果有多个的话一般是用,或分隔符分隔(12,14),列表显示的时候是显示字典名,那如果要在数据库将字典Id转成用户看得懂的字典名,该怎么办呢? 我们这时候可以结合 ...
- POJ 2524 Ubiquitous Religions (并查集)
Description 当今世界有很多不同的宗教,很难通晓他们.你有兴趣找出在你的大学里有多少种不同的宗教信仰.你知道在你的大学里有n个学生(0 < n <= 50000).你无法询问每个 ...
- 关于Date数据类型格式化的转换
例如: jsp页面读取数据库中日期格式的列时可能显示为1988-05-03 00:00:00 格式,但是我们不想要后面的00:00:00时间,只想要前面的年月日,那么该如何做出修改呢? 方法一:我 ...