caffe中的sgd,与激活函数(activation function)
caffe中activation function的形式,直接决定了其训练速度以及SGD的求解。
在caffe中,不同的activation function对应的sgd的方式是不同的,因此,在配置文件中指定activation layer的type,目前caffe中用的最多的是relu的activation function.
caffe中,目前实现的activation function有以下几种:
absval, bnll, power, relu, sigmoid, tanh等几种,分别有单独的layer层。其数学公式分别为:
算了,这部分我不解释了,直接看caffe的tutorial吧
ReLU / Rectified-Linear and Leaky-ReLU
- LayerType:
RELU
- CPU implementation:
./src/caffe/layers/relu_layer.cpp
- CUDA GPU implementation:
./src/caffe/layers/relu_layer.cu
- Parameters (
ReLUParameter relu_param
)- Optional
negative_slope
[default 0]: specifies whether to leak the negative part by multiplying it with the slope value rather than setting it to 0.
- Optional
Sample (as seen in
./examples/imagenet/imagenet_train_val.prototxt
)layers {
name: "relu1"
type: RELU
bottom: "conv1"
top: "conv1"
}
Given an input value x, The RELU
layer computes the output as x if x > 0 and negative_slope * x if x <= 0. When the negative slope parameter is not set, it is equivalent to the standard ReLU function of taking max(x, 0). It also supports in-place computation, meaning that the bottom and the top blob could be the same to preserve memory consumption.
Sigmoid
- LayerType:
SIGMOID
- CPU implementation:
./src/caffe/layers/sigmoid_layer.cpp
- CUDA GPU implementation:
./src/caffe/layers/sigmoid_layer.cu
Sample (as seen in
./examples/imagenet/mnist_autoencoder.prototxt
)layers {
name: "encode1neuron"
bottom: "encode1"
top: "encode1neuron"
type: SIGMOID
}
The SIGMOID
layer computes the output as sigmoid(x) for each input element x.
TanH / Hyperbolic Tangent
- LayerType:
TANH
- CPU implementation:
./src/caffe/layers/tanh_layer.cpp
- CUDA GPU implementation:
./src/caffe/layers/tanh_layer.cu
Sample
layers {
name: "layer"
bottom: "in"
top: "out"
type: TANH
}
The TANH
layer computes the output as tanh(x) for each input element x.
Absolute Value
- LayerType:
ABSVAL
- CPU implementation:
./src/caffe/layers/absval_layer.cpp
- CUDA GPU implementation:
./src/caffe/layers/absval_layer.cu
Sample
layers {
name: "layer"
bottom: "in"
top: "out"
type: ABSVAL
}
The ABSVAL
layer computes the output as abs(x) for each input element x.
Power
- LayerType:
POWER
- CPU implementation:
./src/caffe/layers/power_layer.cpp
- CUDA GPU implementation:
./src/caffe/layers/power_layer.cu
- Parameters (
PowerParameter power_param
)- Optional
power
[default 1]scale
[default 1]shift
[default 0]
- Optional
Sample
layers {
name: "layer"
bottom: "in"
top: "out"
type: POWER
power_param {
power: 1
scale: 1
shift: 0
}
}
The POWER
layer computes the output as (shift + scale * x) ^ power for each input element x.
BNLL
- LayerType:
BNLL
- CPU implementation:
./src/caffe/layers/bnll_layer.cpp
- CUDA GPU implementation:
./src/caffe/layers/bnll_layer.cu
Sample
layers {
name: "layer"
bottom: "in"
top: "out"
type: BNLL
}
The BNLL
(binomial normal log likelihood) layer computes the output as log(1 + exp(x)) for each input element x.
caffe中的sgd,与激活函数(activation function)的更多相关文章
- 激活函数-Activation Function
该博客的内容是莫烦大神的授课内容.在此只做学习记录作用. 原文连接:https://morvanzhou.github.io/tutorials/machine-learning/tensorflow ...
- 浅谈深度学习中的激活函数 - The Activation Function in Deep Learning
原文地址:http://www.cnblogs.com/rgvb178/p/6055213.html版权声明:本文为博主原创文章,未经博主允许不得转载. 激活函数的作用 首先,激活函数不是真的要去激活 ...
- The Activation Function in Deep Learning 浅谈深度学习中的激活函数
原文地址:http://www.cnblogs.com/rgvb178/p/6055213.html 版权声明:本文为博主原创文章,未经博主允许不得转载. 激活函数的作用 首先,激活函数不是真的要去激 ...
- 《Noisy Activation Function》噪声激活函数(一)
本系列文章由 @yhl_leo 出品,转载请注明出处. 文章链接: http://blog.csdn.net/yhl_leo/article/details/51736830 Noisy Activa ...
- MXNet 定义新激活函数(Custom new activation function)
https://blog.csdn.net/weixin_34260991/article/details/87106463 这里使用比较简单的定义方式,只是在原有的激活函数调用中加入. 准备工作下载 ...
- 激活函数:Swish: a Self-Gated Activation Function
今天看到google brain 关于激活函数在2017年提出了一个新的Swish 激活函数. 叫swish,地址:https://arxiv.org/abs/1710.05941v1 pytorch ...
- TensorFlow Activation Function 1
部分转自:https://blog.csdn.net/caicaiatnbu/article/details/72745156 激活函数(Activation Function)运行时激活神经网络中某 ...
- caffe中各层的作用:
关于caffe中的solver: cafffe中的sover的方法都有: Stochastic Gradient Descent (type: "SGD"), AdaDelta ( ...
- ML 激励函数 Activation Function (整理)
本文为内容整理,原文请看url链接,感谢几位博主知识来源 一.什么是激励函数 激励函数一般用于神经网络的层与层之间,上一层的输出通过激励函数的转换之后输入到下一层中.神经网络模型是非线性的,如果没有使 ...
随机推荐
- Silverlight 动态创建Enum
private Type CreateEnum() { List<string> lists = new List<string>(); lists.Add("男&q ...
- python 常见的异常类型
python标准异常异常名称 描述BaseException 所有异常的基类SystemExit 解释器请求退出KeyboardInterrupt 用户中断执行(通常是输入^C)Exception 常 ...
- 分布式任务框架elastic-job 学习笔记
官方资料:https://github.com/dangdangdotcom/elastic-job ------------------------------------------------- ...
- Flutter安装教程
前言 自Flutter beta版发布, 经过几个月的发展, 它已成为了github社区开源项目活跃度的Top50.加上近日Google的Flutter Live 2018全球同步直播宣传,与 Flu ...
- Hibernate系列4-----之删除
1.和它的增改查兄弟不同,多了个until包定义了HibernateUntil类,让我们来一起看看吧 public class HibernateUntil { private static Conf ...
- 排序 & 常用算法
一.快速排序QuickSort 快速排序和归并排序都使用分治法来设计算法,区别在于归并排序把数组分为两个基本等长的子数组,分别排好序之后还要进行归并(Merge)操作,而快速排序拆分子数组的时候显得更 ...
- poj 1947 树形背包
重做这道题 http://blog.csdn.net/woshi250hua/article/details/7632785 http://blog.csdn.net/shuangde800/arti ...
- Dojo 学习笔记 之 Dojo hitch&partial
原文: http://dojotoolkit.org/documentation/tutorials/1.10/hitch/index.html 版本: Dojo 1.10 为了更好地使用JavaSc ...
- PHP underlying structure
http://www.phpinternalsbook.com/classes_objects/magic_interfaces_comparable.html
- c语言 Implement strStr()【Leetcode】
实现在一个母字符串中找到第一个子字符串的位置. #include <stdio.h> #include <string.h> #define _IRON_TRUE 1 #def ...