caffe中activation function的形式,直接决定了其训练速度以及SGD的求解。

在caffe中,不同的activation function对应的sgd的方式是不同的,因此,在配置文件中指定activation layer的type,目前caffe中用的最多的是relu的activation function.

caffe中,目前实现的activation function有以下几种:

absval, bnll, power, relu, sigmoid, tanh等几种,分别有单独的layer层。其数学公式分别为:

算了,这部分我不解释了,直接看caffe的tutorial

ReLU / Rectified-Linear and Leaky-ReLU

  • LayerType: RELU
  • CPU implementation: ./src/caffe/layers/relu_layer.cpp
  • CUDA GPU implementation: ./src/caffe/layers/relu_layer.cu
  • Parameters (ReLUParameter relu_param)
    • Optional

      • negative_slope [default 0]: specifies whether to leak the negative part by multiplying it with the slope value rather than setting it to 0.
  • Sample (as seen in ./examples/imagenet/imagenet_train_val.prototxt)

    layers {
    name: "relu1"
    type: RELU
    bottom: "conv1"
    top: "conv1"
    }

Given an input value x, The RELU layer computes the output as x if x > 0 and negative_slope * x if x <= 0. When the negative slope parameter is not set, it is equivalent to the standard ReLU function of taking max(x, 0). It also supports in-place computation, meaning that the bottom and the top blob could be the same to preserve memory consumption.

Sigmoid

  • LayerType: SIGMOID
  • CPU implementation: ./src/caffe/layers/sigmoid_layer.cpp
  • CUDA GPU implementation: ./src/caffe/layers/sigmoid_layer.cu
  • Sample (as seen in ./examples/imagenet/mnist_autoencoder.prototxt)

    layers {
    name: "encode1neuron"
    bottom: "encode1"
    top: "encode1neuron"
    type: SIGMOID
    }

The SIGMOID layer computes the output as sigmoid(x) for each input element x.

TanH / Hyperbolic Tangent

  • LayerType: TANH
  • CPU implementation: ./src/caffe/layers/tanh_layer.cpp
  • CUDA GPU implementation: ./src/caffe/layers/tanh_layer.cu
  • Sample

    layers {
    name: "layer"
    bottom: "in"
    top: "out"
    type: TANH
    }

The TANH layer computes the output as tanh(x) for each input element x.

Absolute Value

  • LayerType: ABSVAL
  • CPU implementation: ./src/caffe/layers/absval_layer.cpp
  • CUDA GPU implementation: ./src/caffe/layers/absval_layer.cu
  • Sample

    layers {
    name: "layer"
    bottom: "in"
    top: "out"
    type: ABSVAL
    }

The ABSVAL layer computes the output as abs(x) for each input element x.

Power

  • LayerType: POWER
  • CPU implementation: ./src/caffe/layers/power_layer.cpp
  • CUDA GPU implementation: ./src/caffe/layers/power_layer.cu
  • Parameters (PowerParameter power_param)
    • Optional

      • power [default 1]
      • scale [default 1]
      • shift [default 0]
  • Sample

    layers {
    name: "layer"
    bottom: "in"
    top: "out"
    type: POWER
    power_param {
    power: 1
    scale: 1
    shift: 0
    }
    }

The POWER layer computes the output as (shift + scale * x) ^ power for each input element x.

BNLL

  • LayerType: BNLL
  • CPU implementation: ./src/caffe/layers/bnll_layer.cpp
  • CUDA GPU implementation: ./src/caffe/layers/bnll_layer.cu
  • Sample

    layers {
    name: "layer"
    bottom: "in"
    top: "out"
    type: BNLL
    }

The BNLL (binomial normal log likelihood) layer computes the output as log(1 + exp(x)) for each input element x.

caffe中的sgd,与激活函数(activation function)的更多相关文章

  1. 激活函数-Activation Function

    该博客的内容是莫烦大神的授课内容.在此只做学习记录作用. 原文连接:https://morvanzhou.github.io/tutorials/machine-learning/tensorflow ...

  2. 浅谈深度学习中的激活函数 - The Activation Function in Deep Learning

    原文地址:http://www.cnblogs.com/rgvb178/p/6055213.html版权声明:本文为博主原创文章,未经博主允许不得转载. 激活函数的作用 首先,激活函数不是真的要去激活 ...

  3. The Activation Function in Deep Learning 浅谈深度学习中的激活函数

    原文地址:http://www.cnblogs.com/rgvb178/p/6055213.html 版权声明:本文为博主原创文章,未经博主允许不得转载. 激活函数的作用 首先,激活函数不是真的要去激 ...

  4. 《Noisy Activation Function》噪声激活函数(一)

    本系列文章由 @yhl_leo 出品,转载请注明出处. 文章链接: http://blog.csdn.net/yhl_leo/article/details/51736830 Noisy Activa ...

  5. MXNet 定义新激活函数(Custom new activation function)

    https://blog.csdn.net/weixin_34260991/article/details/87106463 这里使用比较简单的定义方式,只是在原有的激活函数调用中加入. 准备工作下载 ...

  6. 激活函数:Swish: a Self-Gated Activation Function

    今天看到google brain 关于激活函数在2017年提出了一个新的Swish 激活函数. 叫swish,地址:https://arxiv.org/abs/1710.05941v1 pytorch ...

  7. TensorFlow Activation Function 1

    部分转自:https://blog.csdn.net/caicaiatnbu/article/details/72745156 激活函数(Activation Function)运行时激活神经网络中某 ...

  8. caffe中各层的作用:

    关于caffe中的solver: cafffe中的sover的方法都有: Stochastic Gradient Descent (type: "SGD"), AdaDelta ( ...

  9. ML 激励函数 Activation Function (整理)

    本文为内容整理,原文请看url链接,感谢几位博主知识来源 一.什么是激励函数 激励函数一般用于神经网络的层与层之间,上一层的输出通过激励函数的转换之后输入到下一层中.神经网络模型是非线性的,如果没有使 ...

随机推荐

  1. Silverlight 动态创建Enum

    private Type CreateEnum() { List<string> lists = new List<string>(); lists.Add("男&q ...

  2. python 常见的异常类型

    python标准异常异常名称 描述BaseException 所有异常的基类SystemExit 解释器请求退出KeyboardInterrupt 用户中断执行(通常是输入^C)Exception 常 ...

  3. 分布式任务框架elastic-job 学习笔记

    官方资料:https://github.com/dangdangdotcom/elastic-job ------------------------------------------------- ...

  4. Flutter安装教程

    前言 自Flutter beta版发布, 经过几个月的发展, 它已成为了github社区开源项目活跃度的Top50.加上近日Google的Flutter Live 2018全球同步直播宣传,与 Flu ...

  5. Hibernate系列4-----之删除

    1.和它的增改查兄弟不同,多了个until包定义了HibernateUntil类,让我们来一起看看吧 public class HibernateUntil { private static Conf ...

  6. 排序 & 常用算法

    一.快速排序QuickSort 快速排序和归并排序都使用分治法来设计算法,区别在于归并排序把数组分为两个基本等长的子数组,分别排好序之后还要进行归并(Merge)操作,而快速排序拆分子数组的时候显得更 ...

  7. poj 1947 树形背包

    重做这道题 http://blog.csdn.net/woshi250hua/article/details/7632785 http://blog.csdn.net/shuangde800/arti ...

  8. Dojo 学习笔记 之 Dojo hitch&partial

    原文: http://dojotoolkit.org/documentation/tutorials/1.10/hitch/index.html 版本: Dojo 1.10 为了更好地使用JavaSc ...

  9. PHP underlying structure

    http://www.phpinternalsbook.com/classes_objects/magic_interfaces_comparable.html

  10. c语言 Implement strStr()【Leetcode】

    实现在一个母字符串中找到第一个子字符串的位置. #include <stdio.h> #include <string.h> #define _IRON_TRUE 1 #def ...