#include<cstdio>
#include<algorithm>
#include<cstring>
#include<queue>
#define N 250
#define M 250
#define INF 100000000
using namespace std;
int head[N],cur[N],lev[N],ecnt=1,S,T,n,m;
queue <int> q;
struct adj
{
int nxt,v,w;
}e[2*M];
void add(int u,int v,int w)
{
e[++ecnt].v=v,e[ecnt].w=w,e[ecnt].nxt=head[u],head[u]=ecnt;
e[++ecnt].v=u,e[ecnt].w=0,e[ecnt].nxt=head[v],head[v]=ecnt;
}
inline int bfs()
{
int u,v;
for (int i=S;i<=T;i++)
lev[i]=-1,cur[i]=head[i];
q.push(S),lev[S]=0;
while (!q.empty())
{
u=q.front();
for (int i=head[u];i;i=e[i].nxt)
{
if (e[i].w>0 && lev[v=e[i].v]==-1)
lev[v]=lev[u]+1,q.push(v);
}
q.pop();
}
return lev[T]!=-1;
}
inline int Dinic(const int &u,const int &flow)
{
if (u==T) return flow;
int res=0,v,delta;
for (int &i=cur[u];i;i=e[i].nxt)
{
if (e[i].w>0 && lev[u]<lev[v=e[i].v])
{
delta=Dinic(v,min(e[i].w,flow-res));
if (delta)
{
e[i].w-=delta;e[i^1].w+=delta;
res+=delta;if (res==flow) break;
}
}
}
if (res!=flow) lev[u]=-1;
return res;
}
inline int Maxflow()
{
int ans=0;
while (bfs()) ans+=Dinic(S,INF);
return ans;
}
inline void init()
{
memset(head,0,sizeof(head));
ecnt=1;
}
int main()
{
while (scanf("%d%d",&n,&m)!=EOF)
{
init();
for (int i=1,x,y,z;i<=n;i++)
{
scanf("%d%d%d",&x,&y,&z);
add(x,y,z);
}
S=1,T=m;
printf("%d\n",Maxflow());
}
return 0;
}

POJ 1273 Drainage Ditches | 最大流模板的更多相关文章

  1. POJ 1273 - Drainage Ditches - [最大流模板题] - [EK算法模板][Dinic算法模板 - 邻接表型]

    题目链接:http://poj.org/problem?id=1273 Time Limit: 1000MS Memory Limit: 10000K Description Every time i ...

  2. poj 1273 Drainage Ditches 最大流入门题

    题目链接:http://poj.org/problem?id=1273 Every time it rains on Farmer John's fields, a pond forms over B ...

  3. Poj 1273 Drainage Ditches(最大流 Edmonds-Karp )

    题目链接:poj1273 Drainage Ditches 呜呜,今天自学网络流,看了EK算法,学的晕晕的,留个简单模板题来作纪念... #include<cstdio> #include ...

  4. POJ 1273 Drainage Ditches (网络流Dinic模板)

    Description Every time it rains on Farmer John's fields, a pond forms over Bessie's favorite clover ...

  5. POJ 1273 Drainage Ditches(最大流Dinic 模板)

    #include<cstdio> #include<cstring> #include<algorithm> using namespace std; int n, ...

  6. POJ 1273 Drainage Ditches 最大流

    这道题用dinic会超时 用E_K就没问题 注意输入数据有重边.POJ1273 dinic的复杂度为O(N*N*M)E_K的复杂度为O(N*M*M)对于这道题,复杂度是相同的. 然而dinic主要依靠 ...

  7. poj 1273 Drainage Ditches(最大流)

    http://poj.org/problem?id=1273 Drainage Ditches Time Limit: 1000MS   Memory Limit: 10000K Total Subm ...

  8. POJ 1273 Drainage Ditches (网络最大流)

    http://poj.org/problem? id=1273 Drainage Ditches Time Limit: 1000MS   Memory Limit: 10000K Total Sub ...

  9. POJ 1273 Drainage Ditches(网络流dinic算法模板)

    POJ 1273给出M条边,N个点,求源点1到汇点N的最大流量. 本文主要就是附上dinic的模板,供以后参考. #include <iostream> #include <stdi ...

随机推荐

  1. Python 初始—(多级字典)

    字典中 嵌套字典 如同json 对象, data={ "msg":{ “xxx.com”:["a","b"] } } data.values ...

  2. 异构数据库迁移——DATAX

    背景 在最近接触到的一个case里面,需要把db2的数据迁移至oracle,客户可接收的停机时间为3小时. 同步方式的比较 一说到停机时间,大家第一时间想到Oracle公司的GoldenGate实时同 ...

  3. MySQL主从复制读写分离如何提高从库性能-实战

    在做主从读写分离时候,需要注意主从的一些不同参数设置,来提高从库的性能,提高应用读取数据的速度,这样做很有必要的. 做读写分离复制主从参数不同设置如下(需要根据自己应用实际情况来设置): parmet ...

  4. Mysql: pt-table-checksum 和 pt-table-sync 检查主从一致性,实验过程

    一.安装 percona 包 1.安装仓库的包 https://www.percona.com/doc/percona-repo-config/yum-repo.html sudo yum insta ...

  5. AngularJS常见面试题

    本文引自:https://segmentfault.com/a/1190000005836443 问题来源:如何衡量一个人的 AngularJS 水平? ng-if 跟 ng-show/hide 的区 ...

  6. Ansible学习 ad-hoc命令

    Ansible提供两种方式去执行命令,一种是ad-hoc命令,一种是写入Ansible playbook.类似于前者在命令行敲shell,后者是写shell-script脚本,前者解决一些简单的任务, ...

  7. elasticsearch 5.x 系列之七 基于索引别名的零停机升级服务

    一,写在前面的话,elasticsearch 建立索引时的Mapping 设置 建议你在设计索引的初期,就把索引的各个字段设计好,因为,elasticsearch 的各个字段,定义好类型后,就无法进行 ...

  8. POJ:2385-Apple Catching(dp经典题)

    Apple Catching Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 14311 Accepted: 7000 Descr ...

  9. Mysql 表转换成 Sqlite表

    目前的转换仅仅支持对没有外键的Mysql数据表 准备: 下载安装 Sqlite Expert 软件 一 获取Mysql中的.sql文件,获取过程省略可以直接导出sql文件 二 在Sqlite Expe ...

  10. 1079: [SCOI2008]着色方案

    链接 思路 首先是dp,如果直接用每个种颜色的剩余个数做状态的话,复杂度为5^15. 由于c<=5,所以用剩余数量的颜色的种类数做状态:f[a][b][c][d][e][last]表示剩余数量为 ...