A Novel Multi-label Classification Based on PCA and ML-KNN
|
A Novel Multi-label Classification Based on PCA and ML-KNN
Di Wu, Dapeng Zhang, Fengqin Yang, Xu Zhou and Tieli Sun*
School of Computer
Science and Information Technology
Northeast Normal University
Changchun, 130117, P. R. China
suntl@nenu.edu.cn
ReceivedDecember
2010; accepted February 2011
Abstract.Multi-label Classification problems are omnipresent.ML-KNN
is a multi-label lazy learning approach. The feature of high dimensionsand redundancy of the dataset is not considered by ML-KNN, so the classificationresult is hard to be improved further. Principal Component Analysis (PCA) is apopular and powerful technique
for feature extraction and dimensionalityreduction. In this paper, a novel multi-label classification algorithm based onPCA and ML-KNN (named PCA-ML-KNN) is proposed. Experiments on two benchmarkdatasets for multi-label learning show that, PCA processes the
dataset in anoptimized manner, eliminating the need of huge dataset for ML-KNN, andPCA-ML-KNN achieves better performance than ML-KNN.
Keywords:Multi-label classification, ML-KNN, Dimension reduction,Feature
extraction, Principal Component Analysis (PCA)
1.Introduction.Multi-label classification is arousing more and more attention and is increasingly required by many applications in
widefields, such as protein function classification, music categorization and semantic scene classification. During the past decade, several multi-label learning algorithms have been proposed, like the multi-label decision tree based learning algorithm [1,2]
, the support vector machine based multi-labellearning algorithm [3], the ML-KNN algorithm [4,5], etc.. ML-KNN is derived from the traditional K-nearest neighbor (KNN) algorithm and is presented by Zhang and others. Several empirical studies demonstrated that
the dataset for Multi-label classification is bulky, and has the characteristic of high dimensions and redundancy. These features pose a serious obstac1e to any attempt to extract pertinent information, thus make it difficult to improve the multi-label classification
algorithms.
PCA is a technique of data analysis [6]. In fact it is a mathematical procedure that uses an orthogonal transformation to convert a set of observations of possibly
correlated variables into a set of values of uncorrelated variables called principal components. The most important application of PCA isto simplify the original data. PCA can effectively identify the most important elements in the dataset, eliminate noise
and redundancy. Another advantage ofPCA is that it has no parameter restrictions, and can be applied to variousfields.
In this paper, a novel multi-label classification algorithm based on PCA and ML-KNN is proposed for improving the classification performance. PCA is adopted to
reduce dataset dimensionality and noise. This isthe first procedure for the classification. Then ML-KNN method is used for rest processing. To verify the effectiveness of PCA-ML-KNN, two datasets, e.g. Sceneand Enron are used, and the experiments report excellent
performance.
*Corresponding
author
版权声明:本文博主原创文章,博客,未经同意不得转载。
A Novel Multi-label Classification Based on PCA and ML-KNN的更多相关文章
- Multi label 多标签分类问题(Pytorch,TensorFlow,Caffe)
适用场景:一个输入对应多个label,或输入类别间不互斥 调用函数: 1. Pytorch使用torch.nn.BCEloss 2. Tensorflow使用tf.losses.sigmoid_cro ...
- [Tensorflow] Cookbook - Object Classification based on CIFAR-10
Convolutional Neural Networks (CNNs) are responsible for the major breakthroughs in image recognitio ...
- 《Benign and maligenant breast tumors classification based on region growing and CNN segmentation》翻译阅读与理解
注明:本人英语水平有限,翻译不当之处,请以英文原版为准,不喜勿喷,另,本文翻译只限于学术交流,不涉及任何版权问题,若有不当侵权或其他任何除学术交流之外的问题,请留言本人,本人立刻删除,谢谢!! 另:欢 ...
- Automatic Annotation of Airborne Images by Label Propagation Based on a Bayesian-CRF Model
贝叶斯+全连接条件场,无人机和航片数据,通过标注航片数据自动生成无人机标注数据,具体不懂
- Hyperspectral Images Classification Based on Dense Convolutional Networks with Spectral-Wise Attention Mechanism
借鉴了DenseNet的思想,用了空洞卷积而不是池化,使得特征图不会缩小,因此每个dense连接都可以直接连,最后一层是包括了前面所有层的特征图. 此外还加入了channel-wise的注意力,对每个 ...
- {ICIP2014}{收录论文列表}
This article come from HEREARS-L1: Learning Tuesday 10:30–12:30; Oral Session; Room: Leonard de Vinc ...
- ECCV 2014 Results (16 Jun, 2014) 结果已出
Accepted Papers Title Primary Subject Area ID 3D computer vision 93 UPnP: An optimal O(n) soluti ...
- A great tutorial with Jupyter notebook for ML beginners
An end to end implementation of a Machine Learning pipeline SPANDAN MADAN Visual Computing Group, Ha ...
- [C2P3] Andrew Ng - Machine Learning
##Advice for Applying Machine Learning Applying machine learning in practice is not always straightf ...
随机推荐
- 为什么国外程序员爱用苹果Mac电脑?(转)
Mac 在国外很受欢迎,尤其是在 设计/web开发/IT 人员圈子里.普通用户喜欢 Mac 可以理解,毕竟 Mac 设计美观,简单好用,没有病毒.那么为什么专业人士也对 Mac 情有独钟呢?从个人使用 ...
- libevent安装总结 - jinfg2008的专栏 - 博客频道 - CSDN.NET
libevent安装总结 - jinfg2008的专栏 - 博客频道 - CSDN.NET libevent安装总结 分类: linux 系统配置 2013-02-13 22:37 99人阅读 评论( ...
- WebService 通过POST方式访问时候,因 URL 意外地以“/方法名”结束,请求格式无法识别 解决办法
因URL意外地以“/方法名”结束,请求格式无法识别. 执行当前Web请求期间生成了未处理的异常.可以使用下面的异常堆栈跟踪信息确定有关异常原因和发生位置的信息. 解决方法:在webservice的we ...
- MSF连环攻击实验
MSF连续攻击实验 一.实验拓扑 二.实验环境 Windows XP BT 5 32位 三.实验原理 通过扫描 XP主机,利用扫描出的漏洞建立 TCP会话,通过进程的提权,进一步获取目标机的控制权限 ...
- linux上svn连接visual svn server时ssl鉴权失败,问题解决(转)
场景:1.在windows 7上安装了visual svn server作为自己的svn服务器. 2.在虚拟机centos 6.3上使用svn客户端check代码,报错: [plain] view p ...
- The Official Preppy Handbook
The Official Preppy Handbook: Lisa Birnbach: 9780894801402: Amazon.com: Books The Official Preppy Ha ...
- Photon + Unity3D 在线游戏开发 学习笔记(两)
本文和大家 和大家说说 Photon 解压后的目录结构 这里面最基本的我们 以后开发要用到的目录 就是 deploy目录,这个目录里 放的是要挂载的 server 当然我们的 server端也要放在 ...
- cocos2d-x 消类游戏,类似Diamond dash 设计
前几天刚刚在学习cocos2d-x,无聊之下自己做了一个类似Diamond dash的消类游戏,今天放到网上来和大家分享一下.我相信Diamond dash这个游戏大家都玩过,游戏的规则是这样的,有一 ...
- dsbskrhkme看么哦么
http://pan.baidu.com/share/link?shareid=3011665141&uk=338692646&third=15 http ...
- JAVA 读取图片储存至本地
需求:serlvet经过处理通过报表工具返回一张报表图(柱状图 折线图). 现在需要把这个图存储到本地 以便随时查看 // 构造URL URL url = new URL(endStr); // 打开 ...