A Novel Multi-label Classification Based on PCA and ML-KNN
|
A Novel Multi-label Classification Based on PCA and ML-KNN
Di Wu, Dapeng Zhang, Fengqin Yang, Xu Zhou and Tieli Sun*
School of Computer
Science and Information Technology
Northeast Normal University
Changchun, 130117, P. R. China
suntl@nenu.edu.cn
ReceivedDecember
2010; accepted February 2011
Abstract.Multi-label Classification problems are omnipresent.ML-KNN
is a multi-label lazy learning approach. The feature of high dimensionsand redundancy of the dataset is not considered by ML-KNN, so the classificationresult is hard to be improved further. Principal Component Analysis (PCA) is apopular and powerful technique
for feature extraction and dimensionalityreduction. In this paper, a novel multi-label classification algorithm based onPCA and ML-KNN (named PCA-ML-KNN) is proposed. Experiments on two benchmarkdatasets for multi-label learning show that, PCA processes the
dataset in anoptimized manner, eliminating the need of huge dataset for ML-KNN, andPCA-ML-KNN achieves better performance than ML-KNN.
Keywords:Multi-label classification, ML-KNN, Dimension reduction,Feature
extraction, Principal Component Analysis (PCA)
1.Introduction.Multi-label classification is arousing more and more attention and is increasingly required by many applications in
widefields, such as protein function classification, music categorization and semantic scene classification. During the past decade, several multi-label learning algorithms have been proposed, like the multi-label decision tree based learning algorithm [1,2]
, the support vector machine based multi-labellearning algorithm [3], the ML-KNN algorithm [4,5], etc.. ML-KNN is derived from the traditional K-nearest neighbor (KNN) algorithm and is presented by Zhang and others. Several empirical studies demonstrated that
the dataset for Multi-label classification is bulky, and has the characteristic of high dimensions and redundancy. These features pose a serious obstac1e to any attempt to extract pertinent information, thus make it difficult to improve the multi-label classification
algorithms.
PCA is a technique of data analysis [6]. In fact it is a mathematical procedure that uses an orthogonal transformation to convert a set of observations of possibly
correlated variables into a set of values of uncorrelated variables called principal components. The most important application of PCA isto simplify the original data. PCA can effectively identify the most important elements in the dataset, eliminate noise
and redundancy. Another advantage ofPCA is that it has no parameter restrictions, and can be applied to variousfields.
In this paper, a novel multi-label classification algorithm based on PCA and ML-KNN is proposed for improving the classification performance. PCA is adopted to
reduce dataset dimensionality and noise. This isthe first procedure for the classification. Then ML-KNN method is used for rest processing. To verify the effectiveness of PCA-ML-KNN, two datasets, e.g. Sceneand Enron are used, and the experiments report excellent
performance.
*Corresponding
author
版权声明:本文博主原创文章,博客,未经同意不得转载。
A Novel Multi-label Classification Based on PCA and ML-KNN的更多相关文章
- Multi label 多标签分类问题(Pytorch,TensorFlow,Caffe)
适用场景:一个输入对应多个label,或输入类别间不互斥 调用函数: 1. Pytorch使用torch.nn.BCEloss 2. Tensorflow使用tf.losses.sigmoid_cro ...
- [Tensorflow] Cookbook - Object Classification based on CIFAR-10
Convolutional Neural Networks (CNNs) are responsible for the major breakthroughs in image recognitio ...
- 《Benign and maligenant breast tumors classification based on region growing and CNN segmentation》翻译阅读与理解
注明:本人英语水平有限,翻译不当之处,请以英文原版为准,不喜勿喷,另,本文翻译只限于学术交流,不涉及任何版权问题,若有不当侵权或其他任何除学术交流之外的问题,请留言本人,本人立刻删除,谢谢!! 另:欢 ...
- Automatic Annotation of Airborne Images by Label Propagation Based on a Bayesian-CRF Model
贝叶斯+全连接条件场,无人机和航片数据,通过标注航片数据自动生成无人机标注数据,具体不懂
- Hyperspectral Images Classification Based on Dense Convolutional Networks with Spectral-Wise Attention Mechanism
借鉴了DenseNet的思想,用了空洞卷积而不是池化,使得特征图不会缩小,因此每个dense连接都可以直接连,最后一层是包括了前面所有层的特征图. 此外还加入了channel-wise的注意力,对每个 ...
- {ICIP2014}{收录论文列表}
This article come from HEREARS-L1: Learning Tuesday 10:30–12:30; Oral Session; Room: Leonard de Vinc ...
- ECCV 2014 Results (16 Jun, 2014) 结果已出
Accepted Papers Title Primary Subject Area ID 3D computer vision 93 UPnP: An optimal O(n) soluti ...
- A great tutorial with Jupyter notebook for ML beginners
An end to end implementation of a Machine Learning pipeline SPANDAN MADAN Visual Computing Group, Ha ...
- [C2P3] Andrew Ng - Machine Learning
##Advice for Applying Machine Learning Applying machine learning in practice is not always straightf ...
随机推荐
- struts2文件上传限制大小问题
struts2默认文件上传大小为2M,如需改动默认大小,解决方法例如以下: <struts> <constant name="struts.multipart.maxSiz ...
- g++编C++11/C++0x遇到的问题
在看<Cplusplus Concurrency In Action Practical Multithreading>当遇到第一个样品: #include<iostream> ...
- ASP.NET MVC的跳转攻击问题
在ASP.NET MVC的自带的模板代码中,有这样一段,用来拦截非登录用户,使其跳转到登录页面,然后登录后在跳转回原页面.所以,期间有一个returnUrl参数用来保存原页面地址.在Login Act ...
- UVA 639 (13.08.25)
Don't Get Rooked In chess, the rook is a piece that can move any number of squaresvertically or ho ...
- ASP.NET MVC 4高级编程(第4版)
<ASP.NET MVC 4高级编程(第4版)> 基本信息 作者: (美)Jon Galloway Phil Haack Brad Wilson K. Scott All ...
- Android 从相冊获取近期拍摄的多张照片(获取相机拍照所存储的照片)
转载请标明出处:http://blog.csdn.net/android_ls/article/details/39928519 在做公司项目时.遇到的需求:自己定义显示照片的网格视图,显示用户近期採 ...
- HTML5游戏开发进阶指南
<HTML5游戏开发进阶指南> 基本信息 作者: (印)香卡(Shankar,A.R.) 译者: 谢光磊 出版社:电子工业出版社 ISBN:9787121212260 上架时间:20 ...
- Android Fragment使用
通常地 fragment做为宿主activity UI的一部分, 被作为activity整个view hierarchy的一部分被嵌入. 有2种方法你能够加入一个fr ...
- 基于.net开发chrome核心浏览器【一】
原文:基于.net开发chrome核心浏览器[一] 说明: 这是本系列的第一篇文章,我会尽快发后续的文章. 源起 1.加快葬送IE6浏览器的进程 世界上使用IE6浏览器最多的地方在中国 中国使用IE6 ...
- pygame系列_draw游戏画图
说到画图,pygame提供了一些很有用的方法进行draw画图. ''' pygame.draw.rect - draw a rectangle shape draw a rectangle shape ...