A Novel Multi-label Classification Based on PCA and ML-KNN
|
A Novel Multi-label Classification Based on PCA and ML-KNN
Di Wu, Dapeng Zhang, Fengqin Yang, Xu Zhou and Tieli Sun*
School of Computer
Science and Information Technology
Northeast Normal University
Changchun, 130117, P. R. China
suntl@nenu.edu.cn
ReceivedDecember
2010; accepted February 2011
Abstract.Multi-label Classification problems are omnipresent.ML-KNN
is a multi-label lazy learning approach. The feature of high dimensionsand redundancy of the dataset is not considered by ML-KNN, so the classificationresult is hard to be improved further. Principal Component Analysis (PCA) is apopular and powerful technique
for feature extraction and dimensionalityreduction. In this paper, a novel multi-label classification algorithm based onPCA and ML-KNN (named PCA-ML-KNN) is proposed. Experiments on two benchmarkdatasets for multi-label learning show that, PCA processes the
dataset in anoptimized manner, eliminating the need of huge dataset for ML-KNN, andPCA-ML-KNN achieves better performance than ML-KNN.
Keywords:Multi-label classification, ML-KNN, Dimension reduction,Feature
extraction, Principal Component Analysis (PCA)
1.Introduction.Multi-label classification is arousing more and more attention and is increasingly required by many applications in
widefields, such as protein function classification, music categorization and semantic scene classification. During the past decade, several multi-label learning algorithms have been proposed, like the multi-label decision tree based learning algorithm [1,2]
, the support vector machine based multi-labellearning algorithm [3], the ML-KNN algorithm [4,5], etc.. ML-KNN is derived from the traditional K-nearest neighbor (KNN) algorithm and is presented by Zhang and others. Several empirical studies demonstrated that
the dataset for Multi-label classification is bulky, and has the characteristic of high dimensions and redundancy. These features pose a serious obstac1e to any attempt to extract pertinent information, thus make it difficult to improve the multi-label classification
algorithms.
PCA is a technique of data analysis [6]. In fact it is a mathematical procedure that uses an orthogonal transformation to convert a set of observations of possibly
correlated variables into a set of values of uncorrelated variables called principal components. The most important application of PCA isto simplify the original data. PCA can effectively identify the most important elements in the dataset, eliminate noise
and redundancy. Another advantage ofPCA is that it has no parameter restrictions, and can be applied to variousfields.
In this paper, a novel multi-label classification algorithm based on PCA and ML-KNN is proposed for improving the classification performance. PCA is adopted to
reduce dataset dimensionality and noise. This isthe first procedure for the classification. Then ML-KNN method is used for rest processing. To verify the effectiveness of PCA-ML-KNN, two datasets, e.g. Sceneand Enron are used, and the experiments report excellent
performance.
*Corresponding
author
版权声明:本文博主原创文章,博客,未经同意不得转载。
A Novel Multi-label Classification Based on PCA and ML-KNN的更多相关文章
- Multi label 多标签分类问题(Pytorch,TensorFlow,Caffe)
适用场景:一个输入对应多个label,或输入类别间不互斥 调用函数: 1. Pytorch使用torch.nn.BCEloss 2. Tensorflow使用tf.losses.sigmoid_cro ...
- [Tensorflow] Cookbook - Object Classification based on CIFAR-10
Convolutional Neural Networks (CNNs) are responsible for the major breakthroughs in image recognitio ...
- 《Benign and maligenant breast tumors classification based on region growing and CNN segmentation》翻译阅读与理解
注明:本人英语水平有限,翻译不当之处,请以英文原版为准,不喜勿喷,另,本文翻译只限于学术交流,不涉及任何版权问题,若有不当侵权或其他任何除学术交流之外的问题,请留言本人,本人立刻删除,谢谢!! 另:欢 ...
- Automatic Annotation of Airborne Images by Label Propagation Based on a Bayesian-CRF Model
贝叶斯+全连接条件场,无人机和航片数据,通过标注航片数据自动生成无人机标注数据,具体不懂
- Hyperspectral Images Classification Based on Dense Convolutional Networks with Spectral-Wise Attention Mechanism
借鉴了DenseNet的思想,用了空洞卷积而不是池化,使得特征图不会缩小,因此每个dense连接都可以直接连,最后一层是包括了前面所有层的特征图. 此外还加入了channel-wise的注意力,对每个 ...
- {ICIP2014}{收录论文列表}
This article come from HEREARS-L1: Learning Tuesday 10:30–12:30; Oral Session; Room: Leonard de Vinc ...
- ECCV 2014 Results (16 Jun, 2014) 结果已出
Accepted Papers Title Primary Subject Area ID 3D computer vision 93 UPnP: An optimal O(n) soluti ...
- A great tutorial with Jupyter notebook for ML beginners
An end to end implementation of a Machine Learning pipeline SPANDAN MADAN Visual Computing Group, Ha ...
- [C2P3] Andrew Ng - Machine Learning
##Advice for Applying Machine Learning Applying machine learning in practice is not always straightf ...
随机推荐
- Linux Shell脚本编程--curl命令详解
用途说明 curl命令是一个功能强大的网络工具,它能够通过http.ftp等方式下载文件,也能够上传文件.其实curl远不止前面所说的那些功能,大家可以通过man curl阅读手册页获取更多的信息.类 ...
- 在Activity中为什么要用managedQuery()
刚開始接触android的时候,每次用数据库都会犹豫使用哪种方式,一种是getContentResolver().query(...),还有一种是managedQuery(...),后来习惯了使用前一 ...
- AOP 之 6.1 AOP基础 ——跟我学spring3(转)
http://jinnianshilongnian.iteye.com/blog/1418596
- 数学之路-python计算实战(19)-机器视觉-卷积滤波
filter2D Convolves an image with the kernel. C++: void filter2D(InputArray src, OutputArray dst, int ...
- HTML5 CSS3专题 纯CSS打造相冊效果
转载请标明出处:http://blog.csdn.net/lmj623565791/article/details/30993277 今天偶然发现电脑里面还有这种一个样例.感觉效果还不错,不记得啥时候 ...
- 经典回忆Effective C++ 1
c++ 联邦语言: typedef { unit C; unit Object-Oriented C++; unit Template C++; unit STL; }; notice: C++高效编 ...
- 使用异步HTTP提升客户端性能(HttpAsyncClient)
使用异步HTTP提升客户端性能(HttpAsyncClient) 大家都知道,应用层的网络模型有同步.异步之分. 同步,意为着线程阻塞,只有等本次请求全部都完成了,才能进行下一次请求. 异步,好处是不 ...
- Windows phone 8 学习笔记(1) 触控输入
原文:Windows phone 8 学习笔记(1) 触控输入 Windows phone 8 的应用 与一般的Pc应用在输入方式上最大的不同就是:Windows phone 8主要依靠触控操作.因此 ...
- Linux下Oracle11G RAC报错:在安装oracle软件时报file not found一例
Linux下Oracle11G RAC报错:在安装oracle软件时报file notfound一例 1.现象 之前安装一切都比較顺利,安装oracle软件时,进度到30%时报错:file not f ...
- Android开发之文件下载,状态时显示下载进度,点击自动安装
在进行软件升级时,需要进行文件下载,在这里实现自定义的文件下载,并在状态栏显示下载进度,下载完成后,点击触发安装. 效果如图: 用于下载文件和显示现在进度的线程类如下: [java] view pl ...