Robberies

Problem Description
The aspiring Roy the Robber has seen a lot of American movies, and knows that the bad guys usually gets caught in the end, often because they become too greedy. He has decided to work in the lucrative business of bank robbery only for a short while, before retiring to a comfortable job at a university.


For a few months now, Roy has been assessing the security of various banks and the amount of cash they hold. He wants to make a calculated risk, and grab as much money as possible.

His mother, Ola, has decided upon a tolerable probability of getting caught. She feels that he is safe enough if the banks he robs together give a probability less than this.

 
Input
The first line of input gives T, the number of cases. For each scenario, the first line of input gives a floating point number P, the probability Roy needs to be below, and an integer N, the number of banks he has plans for. Then follow N lines, where line j gives an integer Mj and a floating point number Pj . 
Bank j contains Mj millions, and the probability of getting caught from robbing it is Pj .
 
Output
For each test case, output a line with the maximum number of millions he can expect to get while the probability of getting caught is less than the limit set.

Notes and Constraints
0 < T <= 100
0.0 <= P <= 1.0
0 < N <= 100
0 < Mj <= 100
0.0 <= Pj <= 1.0
A bank goes bankrupt if it is robbed, and you may assume that all probabilities are independent as the police have very low funds.

 
Sample Input
3
0.04 3
1 0.02
2 0.03
3 0.05
0.06 3
2 0.03
2 0.03
3 0.05
0.10 3
1 0.03
2 0.02
3 0.05
 
Sample Output
2
4
6
 
Wrong Answer
一开始按照一般的做法打出来发现编译报错,原来是忘了下标是double的了,那就把概率乘个100,变成int,然并卵。。精度并不是.2。。再废话一句,cin超时了。。。
 
Answer
参考其他人的,把银行的钱作为体积,概率作为价值,所有银行的钱作为背包容量,因为已经算了逃跑率,方程就是这样:
dp[j]=max(dp[j],dp[j-v[i].vo]*v[i].va);//v是vector的意思,不是体积。
输出的时候从dp[sum]//sum是总钱数)开始循环,遇到的第一个能逃跑的//逃跑率不大于1-p(给出的被抓率)),输出那个下标。
 
#include <cstdio>
#include <iostream>
#include <string>
#include <cstring>
#include <algorithm>
#include <cmath>
#define PI acos(-1.0)
#define ms(a) memset(a,0,sizeof(a))
#define msp memset(mp,0,sizeof(mp))
#define msv memset(vis,0,sizeof(vis))
#define msd memset(dp,0,sizeof(dp))
using namespace std;
#define LOCAL
double dp[];
struct Node
{
int vo;//钱
double va;//[逃跑]概率
}v[];
int main()
{
#ifdef LOCAL
freopen("in.txt", "r", stdin);
//freopen("out.txt","w",stdout);
#endif // LOCAL
//ios::sync_with_stdio(false);
int N;
cin>>N;
while(N--)
{
double p;
int n,sum=;//sum是钱的总数,即背包容量
msd,dp[]=;//什么都不抢,逃跑率100%
scanf("%lf%d",&p,&n);
for(int i=;i<=n;i++)
{scanf("%d%lf",&v[i].vo,&v[i].va),v[i].va=-v[i].va;
sum+=v[i].vo;} for(int i=;i<=n;i++)
for(int j=sum;j>=;j--)
dp[j]=max(dp[j],dp[j-v[i].vo]*v[i].va); for(int i=sum;i>=;i--)
{
if(dp[i]>-p)
{
printf("%d\n",i);
break;
}
}
}
return ;
}

HDU 2955 Robberies(01背包)的更多相关文章

  1. hdu 2955 Robberies (01背包)

    链接:http://acm.hdu.edu.cn/showproblem.php?pid=2955 思路:一开始看急了,以为概率是直接相加的,wa了无数发,这道题目给的是被抓的概率,我们应该先求出总的 ...

  2. hdu 2955 Robberies 0-1背包/概率初始化

    /*Robberies Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Total S ...

  3. HDU 2955 Robberies(01背包变形)

    Robberies Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total S ...

  4. hdu 2955 Robberies (01背包好题)

    Robberies Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total S ...

  5. HDU——2955 Robberies (0-1背包)

    题意:有N个银行,每抢一个银行,可以获得\(v_i\)的前,但是会有\(p_i\)的概率被抓.现在要把被抓概率控制在\(P\)之下,求最多能抢到多少钱. 分析:0-1背包的变形,把重量变成了概率,因为 ...

  6. HDU 2955 Robberies --01背包变形

    这题有些巧妙,看了别人的题解才知道做的. 因为按常规思路的话,背包容量为浮点数,,不好存储,且不能直接相加,所以换一种思路,将背包容量与价值互换,即令各银行总值为背包容量,逃跑概率(1-P)为价值,即 ...

  7. HDOJ 2955 Robberies (01背包)

    10397780 2014-03-26 00:13:51 Accepted 2955 46MS 480K 676 B C++ 泽泽 http://acm.hdu.edu.cn/showproblem. ...

  8. HDU 2955 【01背包/小数/概率DP】

    Robberies Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Total Sub ...

  9. HDOJ.2955 Robberies (01背包+概率问题)

    Robberies 算法学习-–动态规划初探 题意分析 有一个小偷去抢劫银行,给出来银行的个数n,和一个概率p为能够逃跑的临界概率,接下来有n行分别是这个银行所有拥有的钱数mi和抢劫后被抓的概率pi, ...

随机推荐

  1. svn用Cornerstone上传项目丢失静态库.a问题的解决

    最近电脑重装系统后,装上Cornerstone上传项目后,发现又有丢失.a文件的问题,这里说一下解决办法,打开Preferences-->Subversion-->General,将Use ...

  2. 最近一段时间get到的小知识(c++的)

    (1)查看一个程序运行的时间 int main() { clock_t start,end; start=clock(); ... end=clock(); cout<<"Run ...

  3. Symfony命令大全

    执行命令: $ php bin/console 查看一下命令 Symfony version 3.1.5 - app/dev/debug Usage: command [options] [argum ...

  4. JDK根目录介绍

    /bin 存放可执行程序(编译器javac.exe 运行器java.exe 文档生成器javadoc.exe等 ). /db  小型数据库文件. /jre JRE. /include 形成jdk的c. ...

  5. 用python做中文自然语言预处理

    这篇博客根据中文自然语言预处理的步骤分成几个板块.以做LDA实验为例,在处理数据之前,会写一个类似于实验报告的东西,用来指导做实验,OK,举例: 一,实验数据预处理(python,结巴分词)1.对于爬 ...

  6. PHP学习资源

    PHPerNote PHPerNote 是一个php程序员的工作生活笔记,本站包含了php网络编程学习教程,数据库(主要是MySQL数据库)教程,javascript,jquery,div+css,h ...

  7. OSI参考模型初识

    纪念我曾今热爱的数通(^o^). 1.osi参考模型 2.数据的封装和解封装 3.主机和主机间通信

  8. 递归——CPS(一)

    程序中为什么需要栈stack? 普通的程序中,接触到子程序和函数的概念,很直观地,调用子程序时,会首先停止当前做的事情,转而执行被调用的子程序,等子程序执行完成后,再捡起之前挂起的程序,这有可能会使用 ...

  9. 怎么 得到 DBGrid选中行的数据

    转自:https://zhidao.baidu.com/question/1694035814426308148.html 一般是你鼠标点到哪一行,其DataSet的指针就指到了什么位置你可以直接通过 ...

  10. linux安装bind with DLZ <NIOT>

    2015年6月11日 1.sudo wget ftp://ftp.isc.org/isc/bind9/9.10.1/bind-9.10.1.tar.gz  或者 使用“rz”命令 2.tar -zxv ...