Robberies

Problem Description
The aspiring Roy the Robber has seen a lot of American movies, and knows that the bad guys usually gets caught in the end, often because they become too greedy. He has decided to work in the lucrative business of bank robbery only for a short while, before retiring to a comfortable job at a university.


For a few months now, Roy has been assessing the security of various banks and the amount of cash they hold. He wants to make a calculated risk, and grab as much money as possible.

His mother, Ola, has decided upon a tolerable probability of getting caught. She feels that he is safe enough if the banks he robs together give a probability less than this.

 
Input
The first line of input gives T, the number of cases. For each scenario, the first line of input gives a floating point number P, the probability Roy needs to be below, and an integer N, the number of banks he has plans for. Then follow N lines, where line j gives an integer Mj and a floating point number Pj . 
Bank j contains Mj millions, and the probability of getting caught from robbing it is Pj .
 
Output
For each test case, output a line with the maximum number of millions he can expect to get while the probability of getting caught is less than the limit set.

Notes and Constraints
0 < T <= 100
0.0 <= P <= 1.0
0 < N <= 100
0 < Mj <= 100
0.0 <= Pj <= 1.0
A bank goes bankrupt if it is robbed, and you may assume that all probabilities are independent as the police have very low funds.

 
Sample Input
3
0.04 3
1 0.02
2 0.03
3 0.05
0.06 3
2 0.03
2 0.03
3 0.05
0.10 3
1 0.03
2 0.02
3 0.05
 
Sample Output
2
4
6
 
Wrong Answer
一开始按照一般的做法打出来发现编译报错,原来是忘了下标是double的了,那就把概率乘个100,变成int,然并卵。。精度并不是.2。。再废话一句,cin超时了。。。
 
Answer
参考其他人的,把银行的钱作为体积,概率作为价值,所有银行的钱作为背包容量,因为已经算了逃跑率,方程就是这样:
dp[j]=max(dp[j],dp[j-v[i].vo]*v[i].va);//v是vector的意思,不是体积。
输出的时候从dp[sum]//sum是总钱数)开始循环,遇到的第一个能逃跑的//逃跑率不大于1-p(给出的被抓率)),输出那个下标。
 
#include <cstdio>
#include <iostream>
#include <string>
#include <cstring>
#include <algorithm>
#include <cmath>
#define PI acos(-1.0)
#define ms(a) memset(a,0,sizeof(a))
#define msp memset(mp,0,sizeof(mp))
#define msv memset(vis,0,sizeof(vis))
#define msd memset(dp,0,sizeof(dp))
using namespace std;
#define LOCAL
double dp[];
struct Node
{
int vo;//钱
double va;//[逃跑]概率
}v[];
int main()
{
#ifdef LOCAL
freopen("in.txt", "r", stdin);
//freopen("out.txt","w",stdout);
#endif // LOCAL
//ios::sync_with_stdio(false);
int N;
cin>>N;
while(N--)
{
double p;
int n,sum=;//sum是钱的总数,即背包容量
msd,dp[]=;//什么都不抢,逃跑率100%
scanf("%lf%d",&p,&n);
for(int i=;i<=n;i++)
{scanf("%d%lf",&v[i].vo,&v[i].va),v[i].va=-v[i].va;
sum+=v[i].vo;} for(int i=;i<=n;i++)
for(int j=sum;j>=;j--)
dp[j]=max(dp[j],dp[j-v[i].vo]*v[i].va); for(int i=sum;i>=;i--)
{
if(dp[i]>-p)
{
printf("%d\n",i);
break;
}
}
}
return ;
}

HDU 2955 Robberies(01背包)的更多相关文章

  1. hdu 2955 Robberies (01背包)

    链接:http://acm.hdu.edu.cn/showproblem.php?pid=2955 思路:一开始看急了,以为概率是直接相加的,wa了无数发,这道题目给的是被抓的概率,我们应该先求出总的 ...

  2. hdu 2955 Robberies 0-1背包/概率初始化

    /*Robberies Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Total S ...

  3. HDU 2955 Robberies(01背包变形)

    Robberies Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total S ...

  4. hdu 2955 Robberies (01背包好题)

    Robberies Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total S ...

  5. HDU——2955 Robberies (0-1背包)

    题意:有N个银行,每抢一个银行,可以获得\(v_i\)的前,但是会有\(p_i\)的概率被抓.现在要把被抓概率控制在\(P\)之下,求最多能抢到多少钱. 分析:0-1背包的变形,把重量变成了概率,因为 ...

  6. HDU 2955 Robberies --01背包变形

    这题有些巧妙,看了别人的题解才知道做的. 因为按常规思路的话,背包容量为浮点数,,不好存储,且不能直接相加,所以换一种思路,将背包容量与价值互换,即令各银行总值为背包容量,逃跑概率(1-P)为价值,即 ...

  7. HDOJ 2955 Robberies (01背包)

    10397780 2014-03-26 00:13:51 Accepted 2955 46MS 480K 676 B C++ 泽泽 http://acm.hdu.edu.cn/showproblem. ...

  8. HDU 2955 【01背包/小数/概率DP】

    Robberies Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Total Sub ...

  9. HDOJ.2955 Robberies (01背包+概率问题)

    Robberies 算法学习-–动态规划初探 题意分析 有一个小偷去抢劫银行,给出来银行的个数n,和一个概率p为能够逃跑的临界概率,接下来有n行分别是这个银行所有拥有的钱数mi和抢劫后被抓的概率pi, ...

随机推荐

  1. c语言编程实例——小球跳动

    1.预备知识 1.1 相关头文件 "#include"是c语言中用以申明所需调用的库函数或自定义函数的头文件路径及文件名.#include ""和#includ ...

  2. 诡异的数学,数字问题 - leetcode

    134. Gas Station 那么这题包含两个问题: 1. 能否在环上绕一圈? 2. 如果能,这个起点在哪里? 第一个问题,很简单,我对diff数组做个加和就好了,leftGas = ∑diff[ ...

  3. 导入spring源码到eclipse

    1.1安装Gradle 可以从http://www.gradle.org/downloads页面下载Gradle.下载后将文件解压到指定目录,我放在D:\软件\gradle-3.3,然后设置环境变量. ...

  4. 人工手动冷备不完全恢复介绍(purge表不完全恢复)

    不完全恢复不完全恢复的基本类型:1)基于时间点 (until time): 使整个数据库恢复到过去的一个时间点前2)基于scn (until change): 使整个数据库恢复到过去的某个SCN前3) ...

  5. MyBatis 3 与 Spring 4 整合关键

    MyBatis 3 与 Spring 4 整合关键 MyBatis与Spring整合,首先需要一个Spring数据源.其次有两个关键,配置sqlSessionFactory时需要配置扫描sql映射xm ...

  6. Linux软件安装管理 - CentOS (二)

    1. 软件包管理简介 2. rpm命令管理(Redhat Package Manager) 3. yum在线安装 3.1 yum源文件 vi /etc/yum.repos.d/CentOS-Base. ...

  7. C# 实现客户端程序自动更新

    看到一篇不错的帖子,可能以后会用到,果断收藏 文章来源 博客园jenry(云飞扬)http://www.cnblogs.com/jenry/archive/2006/08/15/477302.html ...

  8. css 小知识

    <!-- IE下消除点击图片文字后出现的虚线框代码 --> <style type="text/css">a {blr:expression(this.on ...

  9. git 基本的操作

      查看分支:git branch   查看所有分支:git branch -a   删除分支:git branch -d <name>   创建分支:git branch <nam ...

  10. Gulp安装使用教程

    题记:为什么要使用gulp,网上有很多关于gulp的优势,而在我看来,这些都是工具的优势!工具的优势最主要体现在易用性上,听说gulp比grunt更易用,所以这里写个文档记录. 同样要保证nodejs ...