An Introduction to Modular Math

When we divide two integers we will have an equation that looks like the following:

AB=Q remainder R\dfrac{A}{B} = Q \text{ remainder } R​B​​A​​=Q remainder R

AAA
is the dividend

BBB
is the divisor

QQQ
is the quotient

RRR
is the remainder

Sometimes, we are only interested in what the remainder is when we divide
AAA
by BBB.

For these cases there is an operator called the modulo operator (abbreviated as mod).

Using the same AAA,
BBB,
QQQ,
and RRR
as above, we would have: A mod B=RA \text{ mod } B = RA mod B=R

We would say this as AAA
modulo BBB
is congruent to RRR.
Where BBB
is referred to as the modulus.

For example:

13513 mod 5==2 remainder 33

Visualize modulus with clocks

Observe what happens when we increment numbers by one and then divide them by 3.

03132333435363=======0 remainder 00 remainder 10 remainder 21 remainder 01 remainder 11 remainder 22 remainder 0

The remainders start at 0 and increases by 1 each time, until the number reaches one less than the number we are dividing by. After that, the sequence
repeats.

By noticing this, we can visualize the modulo operator by using circles.

We write 0 at the top of a circle and continuing clockwise writing integers 1, 2, ... up to one less than the modulus.

For example, a clock with the 12 replaced by a 0 would be the circle for a modulus of 12.

To find the result of A mod BA \text{ mod } BA mod B
we can follow these steps:

  1. Construct this clock for size BBB
  2. Start at 0 and move around the clock AAA
    steps
  3. Wherever we land is our solution.

(If the number is positive we step clockwise, if it's negative we step
counter-clockwise.)


Examples

8 mod 4=?8 \text{ mod } 4 = ?8 mod 4=?

With a modulus of 4 we make a clock with numbers 0, 1, 2, 3.

We start at 0 and go through 8 numbers in a clockwise sequence 1, 2, 3, 0, 1, 2, 3, 0.

We ended up at 0 so 8 mod 4=0.

7 mod 2=?7 \text{ mod } 2 = ?7 mod 2=?

With a modulus of 2 we make a clock with numbers 0, 1.

We start at 0 and go through 7 numbers in a clockwise sequence 1, 0, 1, 0, 1, 0, 1.

We ended up at 1 so 7 mod 2=1.

−5 mod 3=?-5 \text{ mod } 3 = ?−5 mod 3=?

With a modulus of 3 we we make a clock with numbers 0, 1, 2.

We start at 0 and go through 5 numbers in counter-clockwise sequence (5 is
negative) 2, 1, 0, 2, 1.

We ended up at 1 so −5 mod 3=1.


Conclusion

If we have A mod BA \text{ mod } BA mod B and
we increase AAA
by a multiple of B,
we will end up in the same spot, i.e.

A mod B=(A+K⋅B) mod BA \text{ mod } B = (A + K \cdot B) \text{ mod } BA mod B=(A+K⋅B) mod B for
any integer K.

For example:

3 mod 10=313 mod 10=323 mod 10=333 mod 10=3

Notes to the Reader

mod in programming languages and calculators

Many programming languages, and calculators, have a mod operator, typically represented with the % symbol. If you calculate the result of a negative number, some languages will give you a negative result.

e.g.

-5 % 3 = -2.In a future article we will explain, why this happens, and what it means.

Congruence Modulo

You may see an expression like:

A≡B (mod C)A \equiv B\ (\text{mod } C)A≡B (mod C)

This says that AAA
is congruent to BBB
modulo CCC.
It is similar to the expressions we used here, but not quite the same.

In the next article we will explain what it means and how it is related to the expressions above.

Mod in math的更多相关文章

  1. VB6与VB.NET对照表

    VB6与VB.NET对照表 VB6.0 VB.NET AddItem Object名.AddItem Object名.Items.Add ListBox1.Items.Add ComboBox1.It ...

  2. VB6.0 和VB.NET 函数对比

    VB6.0和VB.Net的对照表 VB6.0 VB.NET AddItem Object名.AddItem Object名.Items.Add ListBox1.Items.Add ComboBox1 ...

  3. Java的数组长度无需编译指定,因为它是对象

    大家可以看从Thinking in Java中摘出来的代码理解一下,甚至.多维数组的子数组无须等长 //: MultiDimArray.java// Creating multidimensional ...

  4. VB6.0和VB.Net的函数等对照表

    VB6.0和VB.Net的对照表 VB6.0 VB.NET AddItem Object名.AddItem Object名.Items.Add ListBox1.Items.Add ComboBox1 ...

  5. 利用eval函数实现简单的计算器

    """ description : use python eval() function implement a simple calculator functions ...

  6. [洛谷P4245]【模板】任意模数NTT

    题目大意:给你两个多项式$f(x)$和$g(x)$以及一个模数$p(p\leqslant10^9)$,求$f*g\pmod p$ 题解:任意模数$NTT$,最大的数为$p^2\times\max\{n ...

  7. 子数组最小值的总和 Sum of Subarray Minimums

    2018-09-27 23:33:49 问题描述: 问题求解: 方法一.DP(MLE) 动态规划的想法应该是比较容易想到的解法了,因为非常的直观,但是本题的数据规模还是比较大的,如果直接使用动态规划, ...

  8. 动态规划-填格子问题 Domino and Tromino Tiling

    2018-09-01 22:38:19 问题描述: 问题求解: 本题如果是第一看到,应该还是非常棘手的,基本没有什么思路. 不妨先从一种简化的版本来考虑.如果仅有一种砖块,那么,填充的方式如下.

  9. SharePoint REST API - OData查询操作

    博客地址:http://blog.csdn.net/FoxDave 本篇主要讲述SharePoint REST中OData的查询操作.SharePoint REST服务支持很多OData查询字符串 ...

随机推荐

  1. LWP::UserAgent - Web user agent class Web 用户agent 类:

    LWPUserAgent: LWP::UserAgent - Web user agent class Web 用户agent 类: 概述: require LWP::UserAgent; my $u ...

  2. SqlParameter参数化查询

    上篇博客写了关于重构代码用到的SQLHelper类,这个类包括四种函数,根据是否含参和是否有返回值各分两种.在这里写写传参过程用到的SqlParameter. 如果我们使用如下拼接sql字符串的方式进 ...

  3. poj 1564 Sum It Up | zoj 1711 | hdu 1548 (dfs + 剪枝 or 判重)

    Sum It Up Time Limit : 2000/1000ms (Java/Other)   Memory Limit : 65536/32768K (Java/Other) Total Sub ...

  4. Java多线程-实例解析

    Java多线程实例 3种实现方法Java中的多线程有三种实现方式:1.继承Thread类,重写run方法.Thread本质上也是一个实现了Runnable的实例,他代表一个线程的实例,并且启动线程的唯 ...

  5. 2数组的slice和splice方法

    var colors=["blue","red","black","yellow","gray",& ...

  6. Kendo UI开发教程(25): 单页面应用(三) View

    View为屏幕上某个可视部分,可以处理用户事件. View可以通过HTML创建或是通过script元素.缺省情况下View将其所包含的内容封装在一个Div元素中.Kendo创建View有两种方式: 使 ...

  7. Swift - 动态添加删除TableView的单元格(以及内部元件)

    在Swift开发中,我们有时需要动态的添加或删除列表的单元格. 比如我们做一个消息提醒页面,默认页面只显示两个单元格.当点击第二个单元格(时间标签)时,下面会再添加一个单元格放置日期选择控件(同时新增 ...

  8. 基于android的实时音频频谱仪

    前一段实习,本来打算做c++,到了公司发现没啥项目,于是乎转行做了android,写的第一个程序竟然要我处理信号,咱可是一心搞计算机的,没接触过信号的东西,什么都没接触过,于是乎, 找各种朋友,各种熟 ...

  9. 全面解读WM_NOTIFY

    VC中的消息的分类有3种:窗口消息.命令消息和控件通知消息,我们这里要谈的是最后一种:控件通知消息. 控件通知消息,是指这样一种消息,一个窗口内的子控件发生了一些事情,需要通知父窗口.通知消息只适用于 ...

  10. Android 高手进阶,自己定义圆形进度条

    背景介绍 在Android 开发中,我们常常遇到各种各样绚丽的控件,所以,依靠我们Android本身所带的控件是远远不够的,许多时候须要我们自定义控件,在开发的过程中.我们公司遇到了一种须要自己写的一 ...