Python数据预处理—归一化,标准化,正则化
归一化 (Normalization):
属性缩放到一个指定的最大和最小值(通常是1-0)之间,这可以通过preprocessing.MinMaxScaler类实现。常用的最小最大规范化方法(x-min(x))/(max(x)-min(x))
1、对于方差非常小的属性可以增强其稳定性。2、维持稀疏矩阵中为0的条目
>>> X_train = np.array([[ 1., -1., 2.],
... [ 2., 0., 0.],
... [ 0., 1., -1.]])
...
>>> min_max_scaler = preprocessing.MinMaxScaler()
>>> X_train_minmax = min_max_scaler.fit_transform(X_train)
>>> X_train_minmax
array([[ 0.5 , 0. , 1. ],
[ 1. , 0.5 , 0.33333333],
[ 0. , 1. , 0. ]]) >>> #将相同的缩放应用到测试集数据中
>>> X_test = np.array([[ -3., -1., 4.]])
>>> X_test_minmax = min_max_scaler.transform(X_test)
>>> X_test_minmax
array([[-1.5 , 0. , 1.66666667]]) >>> #缩放因子等属性
>>> min_max_scaler.scale_
array([ 0.5 , 0.5 , 0.33...]) >>> min_max_scaler.min_
array([ 0. , 0.5 , 0.33...])
当然,在构造类对象的时候也可以直接指定最大最小值的范围:feature_range=(min, max),此时应用的公式变为:
X_std=(X-X.min(axis=0))/(X.max(axis=0)-X.min(axis=0))
X_scaled=X_std/(max-min)+min
标准化(Standardization):
>>> from sklearn import preprocessing
>>> import numpy as np
>>> X = np.array([[ 1., -1., 2.],
... [ 2., 0., 0.],
... [ 0., 1., -1.]])
>>> X_scaled = preprocessing.scale(X) >>> X_scaled
array([[ 0. ..., -1.22..., 1.33...],
[ 1.22..., 0. ..., -0.26...],
[-1.22..., 1.22..., -1.06...]]) >>>#处理后数据的均值和方差
>>> X_scaled.mean(axis=0)
array([ 0., 0., 0.]) >>> X_scaled.std(axis=0)
array([ 1., 1., 1.])
>>> scaler = preprocessing.StandardScaler().fit(X)
>>> scaler
StandardScaler(copy=True, with_mean=True, with_std=True) >>> scaler.mean_
array([ 1. ..., 0. ..., 0.33...]) >>> scaler.std_
array([ 0.81..., 0.81..., 1.24...]) >>> scaler.transform(X)
array([[ 0. ..., -1.22..., 1.33...],
[ 1.22..., 0. ..., -0.26...],
[-1.22..., 1.22..., -1.06...]]) >>>#可以直接使用训练集对测试集数据进行转换
>>> scaler.transform([[-1., 1., 0.]])
array([[-2.44..., 1.22..., -0.26...]])
正则化:
p-范数的计算公式:||X||p=(|x1|^p+|x2|^p+...+|xn|^p)^1/p
>>> X = [[ 1., -1., 2.],
... [ 2., 0., 0.],
... [ 0., 1., -1.]]
>>> X_normalized = preprocessing.normalize(X, norm='l2') >>> X_normalized
array([[ 0.40..., -0.40..., 0.81...],
[ 1. ..., 0. ..., 0. ...],
[ 0. ..., 0.70..., -0.70...]])
>>> normalizer = preprocessing.Normalizer().fit(X) # fit does nothing
>>> normalizer
Normalizer(copy=True, norm='l2') >>>
>>> normalizer.transform(X)
array([[ 0.40..., -0.40..., 0.81...],
[ 1. ..., 0. ..., 0. ...],
[ 0. ..., 0.70..., -0.70...]]) >>> normalizer.transform([[-1., 1., 0.]])
array([[-0.70..., 0.70..., 0. ...]])
参考:
Python数据预处理—归一化,标准化,正则化的更多相关文章
- 关于使用sklearn进行数据预处理 —— 归一化/标准化/正则化
一.标准化(Z-Score),或者去除均值和方差缩放 公式为:(X-mean)/std 计算时对每个属性/每列分别进行. 将数据按期属性(按列进行)减去其均值,并处以其方差.得到的结果是,对于每个属 ...
- 【原】关于使用sklearn进行数据预处理 —— 归一化/标准化/正则化
一.标准化(Z-Score),或者去除均值和方差缩放 公式为:(X-mean)/std 计算时对每个属性/每列分别进行. 将数据按期属性(按列进行)减去其均值,并处以其方差.得到的结果是,对于每个属 ...
- 使用sklearn进行数据预处理 —— 归一化/标准化/正则化
一.标准化(Z-Score),或者去除均值和方差缩放 公式为:(X-mean)/std 计算时对每个属性/每列分别进行. 将数据按期属性(按列进行)减去其均值,并除以其方差.得到的结果是,对于每个属 ...
- [Scikit-Learn] - 数据预处理 - 归一化/标准化/正则化
reference: http://www.cnblogs.com/chaosimple/p/4153167.html 一.标准化(Z-Score),或者去除均值和方差缩放 公式为:(X-mean)/ ...
- Python数据预处理:机器学习、人工智能通用技术(1)
Python数据预处理:机器学习.人工智能通用技术 白宁超 2018年12月24日17:28:26 摘要:大数据技术与我们日常生活越来越紧密,要做大数据,首要解决数据问题.原始数据存在大量不完整.不 ...
- Python数据预处理(sklearn.preprocessing)—归一化(MinMaxScaler),标准化(StandardScaler),正则化(Normalizer, normalize)
关于数据预处理的几个概念 归一化 (Normalization): 属性缩放到一个指定的最大和最小值(通常是1-0)之间,这可以通过preprocessing.MinMaxScaler类实现. 常 ...
- python data analysis | python数据预处理(基于scikit-learn模块)
原文:http://www.jianshu.com/p/94516a58314d Dataset transformations| 数据转换 Combining estimators|组合学习器 Fe ...
- 数据预处理:标准化(Standardization)
注:本文是人工智能研究网的学习笔记 常用的数据预处理方式 Standardization, or mean removal and variance scaling Normalization: sc ...
- python数据预处理for knn
机器学习实战 一书中第20页数据预处理,从文本中解析数据的程序. import numpy as np def dataPreProcessing(fileName): with open(fileN ...
随机推荐
- C#的匿名委托 和 Java的匿名局部内部类
.NET:C#的匿名委托 和 Java的匿名局部内部类 目录 背景实验备注 背景返回目录 这几天重温Java,发现Java在嵌套类型这里提供的特性比较多,结合自身对C#中匿名委托的理解,我大胆的做了一 ...
- JDBC公共操作类
import java.sql.Connection; import java.sql.DriverManager; import java.sql.ResultSet; import java.sq ...
- QQ登录(OAuth2.0)
QQ登录(OAuth2.0) 那些年,我们开发的接口之:QQ登录(OAuth2.0) 吴剑 2013-06-14 原创文章,转载必须注明出处:http://www.cnblogs.com/wujian ...
- JS实现以日历形式显示当前时间
效果图: <script language="Javascript"> var datelocalweek=new Array("星期日", &qu ...
- 基于BrokerPattern服务器框架
基于BrokerPattern服务器框架 RedRabbit 经典网游服务器架构 该图省略了专门用途的dbserver.guildserver等用于专门功能的server,该架构的优点有: l Log ...
- 通用高性能 Windows Socket 组件 HP-Socket v2.2.2 更新发布
HP-Socket 是一套通用的高性能 Windows Socket 组件包,包含服务端组件(IOCP 模型)和客户端组件(Event Select 模型),广泛适用于 Windows 平台的 TCP ...
- Ubuntu12.10 下搭建基于KVM-QEMU的虚拟机环境(八)
Libvirt 是用c写的一个管理虚拟机及其资源(如网络.存储和外设等)的工具库,它不仅支持KVM/QEMU,它还支持xen,Vmware,OpenVZ和VirtualBox等其他HyperVisor ...
- Java的Exception和Error面试题10问10答
在Java核心知识的面试中,你总能碰到关于 处理Exception和Error的面试题.Exception处理是Java应用开发中一个非常重要的方面,也是编写强健而稳定的Java程序的关键,这自然使它 ...
- .Net程序员学用Oracle系列(10):系统函数(下)
<.Net程序员学用Oracle系列:导航目录> 本文大纲 1.转换函数 1.1.TO_CHAR 1.2.TO_NUMBER 1.3.TO_DATE 1.4.CAST 2.近似值函数 2. ...
- [ios] 微信订阅号: ios博文精选
晚上下班后时间充裕,平时要么看电视剧,要么玩游戏 感觉浪费时间. 最后决定自己也搞一个微信订阅号分享技术方面的东西,也提升自己. 如果大家也是一样情况,欢迎大家关注我的订阅号. 微信订阅号: ios ...