关于数据预处理的几个概念

归一化 (Normalization):

属性缩放到一个指定的最大和最小值(通常是1-0)之间,这可以通过preprocessing.MinMaxScaler类实现。
常用的最小最大规范化方法(x-min(x))/(max(x)-min(x))
除了上述介绍的方法之外,另一种常用的方法是将属性缩放到一个指定的最大和最小值(通常是1-0)之间,这可以通过preprocessing.MinMaxScaler类实现。
使用这种方法的目的包括:
1、对于方差非常小的属性可以增强其稳定性。
2、维持稀疏矩阵中为0的条目
>>> X_train = np.array([[ 1., -1., 2.],
... [ 2., 0., 0.],
... [ 0., 1., -1.]])
...
>>> min_max_scaler = preprocessing.MinMaxScaler()
>>> X_train_minmax = min_max_scaler.fit_transform(X_train)
>>> X_train_minmax
array([[ 0.5 , 0. , 1. ],
[ 1. , 0.5 , 0.33333333],
[ 0. , 1. , 0. ]]) >>> #将相同的缩放应用到测试集数据中
>>> X_test = np.array([[ -3., -1., 4.]])
>>> X_test_minmax = min_max_scaler.transform(X_test)
>>> X_test_minmax
array([[-1.5 , 0. , 1.66666667]]) >>> #缩放因子等属性
>>> min_max_scaler.scale_
array([ 0.5 , 0.5 , 0.33...]) >>> min_max_scaler.min_
array([ 0. , 0.5 , 0.33...])

当然,在构造类对象的时候也可以直接指定最大最小值的范围:feature_range=(min, max),此时应用的公式变为:

X_std=(X-X.min(axis=0))/(X.max(axis=0)-X.min(axis=0))

X_scaled=X_std/(max-min)+min

 

标准化(Standardization):

将数据按比例缩放,使之落入一个小的特定区间内,标准化后的数据可正可负,一般绝对值不会太大。
计算时对每个属性/每列分别进行
将数据按期属性(按列进行)减去其均值,并处以其方差。得到的结果是,对于每个属性/每列来说所有数据都聚集在0附近,方差为1。
使用z-score方法规范化(x-mean(x))/std(x)
这个在matlab中有特定的方程
使用sklearn.preprocessing.scale()函数,可以直接将给定数据进行标准化:
>>> from sklearn import preprocessing
>>> import numpy as np
>>> X = np.array([[ 1., -1., 2.],
... [ 2., 0., 0.],
... [ 0., 1., -1.]])
>>> X_scaled = preprocessing.scale(X) >>> X_scaled
array([[ 0. ..., -1.22..., 1.33...],
[ 1.22..., 0. ..., -0.26...],
[-1.22..., 1.22..., -1.06...]]) >>>#处理后数据的均值和方差
>>> X_scaled.mean(axis=0)
array([ 0., 0., 0.]) >>> X_scaled.std(axis=0)
array([ 1., 1., 1.])
使用sklearn.preprocessing.StandardScaler类,使用该类的好处在于可以保存训练集中的参数(均值、方差)直接使用其对象转换测试集数据:
>>> scaler = preprocessing.StandardScaler().fit(X)
>>> scaler
StandardScaler(copy=True, with_mean=True, with_std=True) >>> scaler.mean_
array([ 1. ..., 0. ..., 0.33...]) >>> scaler.std_
array([ 0.81..., 0.81..., 1.24...]) >>> scaler.transform(X)
array([[ 0. ..., -1.22..., 1.33...],
[ 1.22..., 0. ..., -0.26...],
[-1.22..., 1.22..., -1.06...]]) >>>#可以直接使用训练集对测试集数据进行转换
>>> scaler.transform([[-1., 1., 0.]])
array([[-2.44..., 1.22..., -0.26...]])

正则化:

正则化的过程是将每个样本缩放到单位范数(每个样本的范数为1),如果后面要使用如二次型(点积)或者其它核方法计算两个样本之间的相似性这个方法会很有用。
 
Normalization主要思想是对每个样本计算其p-范数,然后对该样本中每个元素除以该范数,这样处理的结果是使得每个处理后样本的p-范数(l1-norm,l2-norm)等于1。
 
             p-范数的计算公式:||X||p=(|x1|^p+|x2|^p+...+|xn|^p)^1/p
该方法主要应用于文本分类和聚类中。例如,对于两个TF-IDF向量的l2-norm进行点积,就可以得到这两个向量的余弦相似性。
 
1、可以使用preprocessing.normalize()函数对指定数据进行转换:
>>> X = [[ 1., -1., 2.],
... [ 2., 0., 0.],
... [ 0., 1., -1.]]
>>> X_normalized = preprocessing.normalize(X, norm='l2') >>> X_normalized
array([[ 0.40..., -0.40..., 0.81...],
[ 1. ..., 0. ..., 0. ...],
[ 0. ..., 0.70..., -0.70...]])
2、可以使用processing.Normalizer()类实现对训练集和测试集的拟合和转换:
>>> normalizer = preprocessing.Normalizer().fit(X) # fit does nothing
>>> normalizer
Normalizer(copy=True, norm='l2') >>>
>>> normalizer.transform(X)
array([[ 0.40..., -0.40..., 0.81...],
[ 1. ..., 0. ..., 0. ...],
[ 0. ..., 0.70..., -0.70...]]) >>> normalizer.transform([[-1., 1., 0.]])
array([[-0.70..., 0.70..., 0. ...]])

 

参考:
 

Python数据预处理—归一化,标准化,正则化的更多相关文章

  1. 关于使用sklearn进行数据预处理 —— 归一化/标准化/正则化

    一.标准化(Z-Score),或者去除均值和方差缩放 公式为:(X-mean)/std  计算时对每个属性/每列分别进行. 将数据按期属性(按列进行)减去其均值,并处以其方差.得到的结果是,对于每个属 ...

  2. 【原】关于使用sklearn进行数据预处理 —— 归一化/标准化/正则化

    一.标准化(Z-Score),或者去除均值和方差缩放 公式为:(X-mean)/std  计算时对每个属性/每列分别进行. 将数据按期属性(按列进行)减去其均值,并处以其方差.得到的结果是,对于每个属 ...

  3. 使用sklearn进行数据预处理 —— 归一化/标准化/正则化

    一.标准化(Z-Score),或者去除均值和方差缩放 公式为:(X-mean)/std  计算时对每个属性/每列分别进行. 将数据按期属性(按列进行)减去其均值,并除以其方差.得到的结果是,对于每个属 ...

  4. [Scikit-Learn] - 数据预处理 - 归一化/标准化/正则化

    reference: http://www.cnblogs.com/chaosimple/p/4153167.html 一.标准化(Z-Score),或者去除均值和方差缩放 公式为:(X-mean)/ ...

  5. Python数据预处理:机器学习、人工智能通用技术(1)

    Python数据预处理:机器学习.人工智能通用技术 白宁超  2018年12月24日17:28:26 摘要:大数据技术与我们日常生活越来越紧密,要做大数据,首要解决数据问题.原始数据存在大量不完整.不 ...

  6. Python数据预处理(sklearn.preprocessing)—归一化(MinMaxScaler),标准化(StandardScaler),正则化(Normalizer, normalize)

      关于数据预处理的几个概念 归一化 (Normalization): 属性缩放到一个指定的最大和最小值(通常是1-0)之间,这可以通过preprocessing.MinMaxScaler类实现. 常 ...

  7. python data analysis | python数据预处理(基于scikit-learn模块)

    原文:http://www.jianshu.com/p/94516a58314d Dataset transformations| 数据转换 Combining estimators|组合学习器 Fe ...

  8. 数据预处理:标准化(Standardization)

    注:本文是人工智能研究网的学习笔记 常用的数据预处理方式 Standardization, or mean removal and variance scaling Normalization: sc ...

  9. python数据预处理for knn

    机器学习实战 一书中第20页数据预处理,从文本中解析数据的程序. import numpy as np def dataPreProcessing(fileName): with open(fileN ...

随机推荐

  1. MKNetworkKit 使用

    关于ios 网络请求之MKNetworkKit库的使用 项目导入MK库之后,还需要导入三个框架文件: SystemConfiguration.framework CFNetwork.framework ...

  2. JDBC之事务隔离级别以及ACID特性

    JDBC之事务隔离级别以及ACID特性 事务隔离级别: 1.更新遗失(Lost update) 两个事务都同时更新一行数据,但是第二个事务却中途失败退出,导致对数据的两个修改都失效了.这是因为系统没有 ...

  3. 启动mysql错误解决方案,学会查看错误日志:mysql.sock丢失,mysqld_safe启动报错

    本人还是个菜鸟,下面是我的经验之谈,能解决一些问题,有不对的地方,敬请斧正. 我的是CentOS6.3+MySQL5.1.57. 重启了一次服务器后,使用> mysql -u root -p登陆 ...

  4. WP自定义字体

    IOS7的数字真的很好看啊,于是想放在自己的应用中.在网上找了下,发现这个字体叫HelveticaNeueLTPro-UltLt,于是随便在某个字体网站下了这个字体.拖到项目里换字体,但是,悲剧开始了 ...

  5. rsync 文件校验及同步原理

    rsync 文件校验及同步原理 参考:http://rsync.samba.org/how-rsync-works.html 我们关注的是其发送与接收校验文件的算法,这里附上原文和我老婆(^_^)的翻 ...

  6. Nginx学习笔记4 源码分析

    Nginx学习笔记(四) 源码分析 源码分析 在茫茫的源码中,看到了几个好像挺熟悉的名字(socket/UDP/shmem).那就来看看这个文件吧!从简单的开始~~~ src/os/unix/Ngx_ ...

  7. GestureDetector学习之左右滑动,上下滑动屏幕切换页面

    要实现滑屏等触发事件,视情况而定: 如果实现的触屏或者手势效果较多,则使用第一种方法,实现OnGestureListener 接口(参考OnGestureListener): 如果只是实现较少的效果, ...

  8. 如何制作一个类似Tiny Wings的游戏 Cocos2d-x 2.1.4

    在第一篇<如何使用CCRenderTexture创建动态纹理>基础上,增加创建动态山丘,原文<How To Create A Game Like Tiny Wings with Co ...

  9. [重构到模式-Chain of Responsibility Pattern]把Fizz Buzz招式重构到责任链模式

    写一段程序从1打印到100,但是遇到3的倍数时打印Fizz,遇到5的倍数时打印Buzz,遇到即是3的倍数同时也是5的倍数时打印FizzBuzz.例如: 1 2 Fizz 4 Buzz Fizz 7 8 ...

  10. JS中转义字符的处理

    //去掉html标签 1 2 3 function removeHtmlTab(tab) {  return tab.replace(/<[^<>]+?>/g,'');//删除 ...