级联分类器检测类CascadeClassifier,提供了两个重要的方法:

CascadeClassifier cascade_classifier;
cascade_classifier.load( cascade_dir + cascade_name );// 加载
vector<Rect> object_rect;
cascade_classifier.detectMultiScale( img1, object_rect, 1.1, min_win, 0|CASCADE_SCALE_IMAGE, Size(32,32) );// 识别

头文件:objdetect.hpp,实现在cascadedetect.cpp中。

CV_WRAP virtual void detectMultiScale( const Mat& image,
CV_OUT vector<Rect>& objects,
double scaleFactor=1.1,
int minNeighbors=3, int flags=0,
Size minSize=Size(),
Size maxSize=Size() );

代码的实现:

void CascadeClassifier::detectMultiScale( const Mat& image, vector<Rect>& objects,
double scaleFactor, int minNeighbors,
int flags, Size minObjectSize, Size maxObjectSize)
{
vector<int> fakeLevels;
vector<double> fakeWeights;
detectMultiScale( image, objects, fakeLevels, fakeWeights, scaleFactor,
minNeighbors, flags, minObjectSize, maxObjectSize, false );
}

fakeLevels是检测未通过层的级数,fakeWeights是未通过层的强分类器的输出,不使用时outputRejectLevels=false。

//检测函数
void CascadeClassifier::detectMultiScale( const Mat& image, vector<Rect>& objects,
vector<int>& rejectLevels,
vector<double>& levelWeights,
double scaleFactor, int minNeighbors,
int flags, Size minObjectSize, Size maxObjectSize,
bool outputRejectLevels )
{
const double GROUP_EPS = 0.2; CV_Assert( scaleFactor > 1 && image.depth() == CV_8U ); if( empty() )
return; if( isOldFormatCascade() )
{
MemStorage storage(cvCreateMemStorage(0));
CvMat _image = image;
CvSeq* _objects = cvHaarDetectObjectsForROC( &_image, oldCascade, storage, rejectLevels, levelWeights, scaleFactor,
minNeighbors, flags, minObjectSize, maxObjectSize, outputRejectLevels );
vector<CvAvgComp> vecAvgComp;
Seq<CvAvgComp>(_objects).copyTo(vecAvgComp);
objects.resize(vecAvgComp.size());
std::transform(vecAvgComp.begin(), vecAvgComp.end(), objects.begin(), getRect());
return;
} objects.clear(); if (!maskGenerator.empty()) {
maskGenerator->initializeMask(image);
} if( maxObjectSize.height == 0 || maxObjectSize.width == 0 )
maxObjectSize = image.size(); Mat grayImage = image;
if( grayImage.channels() > 1 )
{
Mat temp;
cvtColor(grayImage, temp, CV_BGR2GRAY);
grayImage = temp;
} Mat imageBuffer(image.rows + 1, image.cols + 1, CV_8U);
vector<Rect> candidates; for( double factor = 1; ; factor *= scaleFactor )
{
Size originalWindowSize = getOriginalWindowSize(); Size windowSize( cvRound(originalWindowSize.width*factor), cvRound(originalWindowSize.height*factor) );
Size scaledImageSize( cvRound( grayImage.cols/factor ), cvRound( grayImage.rows/factor ) );
Size processingRectSize( scaledImageSize.width - originalWindowSize.width, scaledImageSize.height - originalWindowSize.height ); if( processingRectSize.width <= 0 || processingRectSize.height <= 0 )
break;
if( windowSize.width > maxObjectSize.width || windowSize.height > maxObjectSize.height )
break;
if( windowSize.width < minObjectSize.width || windowSize.height < minObjectSize.height )
continue;
//缩放图片
Mat scaledImage( scaledImageSize, CV_8U, imageBuffer.data );
resize( grayImage, scaledImage, scaledImageSize, 0, 0, CV_INTER_LINEAR );
//计算步长
int yStep;
if( getFeatureType() == cv::FeatureEvaluator::HOG )
{
yStep = 4;
}
else
{
yStep = factor > 2. ? 1 : 2;
} int stripCount, stripSize; const int PTS_PER_THREAD = 1000;
stripCount = ((processingRectSize.width/yStep)*(processingRectSize.height + yStep-1)/yStep + PTS_PER_THREAD/2)/PTS_PER_THREAD;
stripCount = std::min(std::max(stripCount, 1), 100);
stripSize = (((processingRectSize.height + stripCount - 1)/stripCount + yStep-1)/yStep)*yStep;
// 调用单尺度检测函数进行检测
if( !detectSingleScale( scaledImage, stripCount, processingRectSize, stripSize, yStep, factor, candidates,
rejectLevels, levelWeights, outputRejectLevels ) )
break;
} objects.resize(candidates.size());
std::copy(candidates.begin(), candidates.end(), objects.begin());
//合并检测结果
if( outputRejectLevels )
{
groupRectangles( objects, rejectLevels, levelWeights, minNeighbors, GROUP_EPS );
}
else
{
groupRectangles( objects, minNeighbors, GROUP_EPS );
}
}

函数的工作:检测各个尺寸的图片,然后合并检测结果。具体单尺寸的检测见:

bool CascadeClassifier::detectSingleScale( const Mat& image, int stripCount, Size processingRectSize,
int stripSize, int yStep, double factor, vector<Rect>& candidates,
vector<int>& levels, vector<double>& weights, bool outputRejectLevels )
{
// 计算当前图像的积分图
if( !featureEvaluator->setImage( image, data.origWinSize ) )
return false; #if defined (LOG_CASCADE_STATISTIC)
logger.setImage(image);
#endif Mat currentMask;
if (!maskGenerator.empty()) {
currentMask=maskGenerator->generateMask(image);
} vector<Rect> candidatesVector;
vector<int> rejectLevels;
vector<double> levelWeights;
Mutex mtx;
if( outputRejectLevels )
{
parallel_for_(Range(0, stripCount), CascadeClassifierInvoker( *this, processingRectSize, stripSize, yStep, factor,
candidatesVector, rejectLevels, levelWeights, true, currentMask, &mtx));
levels.insert( levels.end(), rejectLevels.begin(), rejectLevels.end() );
weights.insert( weights.end(), levelWeights.begin(), levelWeights.end() );
}
else
{
//CascadeClassifierInvoker函数的operator()实现具体的检测过程
parallel_for_(Range(0, stripCount), CascadeClassifierInvoker( *this, processingRectSize, stripSize, yStep, factor,
candidatesVector, rejectLevels, levelWeights, false, currentMask, &mtx));
}
candidates.insert( candidates.end(), candidatesVector.begin(), candidatesVector.end() ); #if defined (LOG_CASCADE_STATISTIC)
logger.write();
#endif return true;
}

进而:

CascadeClassifierInvoker( CascadeClassifier& _cc, Size _sz1, int _stripSize, int _yStep, double _factor,
vector<Rect>& _vec, vector<int>& _levels, vector<double>& _weights, bool outputLevels, const Mat& _mask, Mutex* _mtx)
{
classifier = &_cc;
processingRectSize = _sz1;
stripSize = _stripSize;
yStep = _yStep;
scalingFactor = _factor;
rectangles = &_vec;
rejectLevels = outputLevels ? &_levels : 0;
levelWeights = outputLevels ? &_weights : 0;
mask = _mask;
mtx = _mtx;
} void operator()(const Range& range) const
{
Ptr<FeatureEvaluator> evaluator = classifier->featureEvaluator->clone(); Size winSize(cvRound(classifier->data.origWinSize.width * scalingFactor), cvRound(classifier->data.origWinSize.height * scalingFactor)); int y1 = range.start * stripSize;
int y2 = min(range.end * stripSize, processingRectSize.height);
for( int y = y1; y < y2; y += yStep )
{
for( int x = 0; x < processingRectSize.width; x += yStep )
{
if ( (!mask.empty()) && (mask.at<uchar>(Point(x,y))==0)) {
continue;
} double gypWeight;
int result = classifier->runAt(evaluator, Point(x, y), gypWeight); #if defined (LOG_CASCADE_STATISTIC) logger.setPoint(Point(x, y), result);
#endif
//是否返回级数
if( rejectLevels )
{
if( result == 1 )
result = -(int)classifier->data.stages.size();
if( classifier->data.stages.size() + result < 4 )
{
mtx->lock();
rectangles->push_back(Rect(cvRound(x*scalingFactor), cvRound(y*scalingFactor), winSize.width, winSize.height));
rejectLevels->push_back(-result);
levelWeights->push_back(gypWeight);
mtx->unlock();
}
}
else if( result > 0 )
{
mtx->lock();
//添加检测得到的矩形框(还原到原图)
rectangles->push_back(Rect(cvRound(x*scalingFactor), cvRound(y*scalingFactor),
winSize.width, winSize.height));
mtx->unlock();
}
// 如果一级都没有通过那么加大搜索步长
if( result == 0 )
x += yStep;
}
}
}

检测框的合并过程:

void groupRectangles(vector<Rect>& rectList, int groupThreshold, double eps)
{
groupRectangles(rectList, groupThreshold, eps, 0, 0);
}

进而:

void groupRectangles(vector<Rect>& rectList, int groupThreshold, double eps, vector<int>* weights, vector<double>* levelWeights)
{
if( groupThreshold <= 0 || rectList.empty() )
{
if( weights )
{
size_t i, sz = rectList.size();
weights->resize(sz);
for( i = 0; i < sz; i++ )
(*weights)[i] = 1;
}
return;
} vector<int> labels;
//对rectList中的矩形进行分类
int nclasses = partition(rectList, labels, SimilarRects(eps)); vector<Rect> rrects(nclasses);
vector<int> rweights(nclasses, 0);
vector<int> rejectLevels(nclasses, 0);
vector<double> rejectWeights(nclasses, DBL_MIN);
int i, j, nlabels = (int)labels.size();
//组合分到同一类别的矩形并保存当前类别下通过stage的最大值以及最大的权重
for( i = 0; i < nlabels; i++ )
{
int cls = labels[i];
rrects[cls].x += rectList[i].x;
rrects[cls].y += rectList[i].y;
rrects[cls].width += rectList[i].width;
rrects[cls].height += rectList[i].height;
rweights[cls]++;
}
if ( levelWeights && weights && !weights->empty() && !levelWeights->empty() )
{
for( i = 0; i < nlabels; i++ )
{
int cls = labels[i];
if( (*weights)[i] > rejectLevels[cls] )
{
rejectLevels[cls] = (*weights)[i];
rejectWeights[cls] = (*levelWeights)[i];
}
else if( ( (*weights)[i] == rejectLevels[cls] ) && ( (*levelWeights)[i] > rejectWeights[cls] ) )
rejectWeights[cls] = (*levelWeights)[i];
}
} for( i = 0; i < nclasses; i++ )
{
Rect r = rrects[i];
float s = 1.f/rweights[i];
rrects[i] = Rect(saturate_cast<int>(r.x*s),
saturate_cast<int>(r.y*s),
saturate_cast<int>(r.width*s),
saturate_cast<int>(r.height*s));
} rectList.clear();
if( weights )
weights->clear();
if( levelWeights )
levelWeights->clear();
//按照groupThreshold合并规则,以及是否存在包含关系输出合并后的矩形
for( i = 0; i < nclasses; i++ )
{
Rect r1 = rrects[i];
int n1 = levelWeights ? rejectLevels[i] : rweights[i];
double w1 = rejectWeights[i];
if( n1 <= groupThreshold )
continue;
// filter out small face rectangles inside large rectangles
for( j = 0; j < nclasses; j++ )
{
int n2 = rweights[j]; if( j == i || n2 <= groupThreshold )
continue;
Rect r2 = rrects[j]; int dx = saturate_cast<int>( r2.width * eps );
int dy = saturate_cast<int>( r2.height * eps );
// 当r1在r2的内部的时候,停止
if( i != j &&
r1.x >= r2.x - dx &&
r1.y >= r2.y - dy &&
r1.x + r1.width <= r2.x + r2.width + dx &&
r1.y + r1.height <= r2.y + r2.height + dy &&
(n2 > std::max(3, n1) || n1 < 3) )
break;
} if( j == nclasses )
{
rectList.push_back(r1);
if( weights )
weights->push_back(n1);
if( levelWeights )
levelWeights->push_back(w1);
}
}
}

其中:

class CV_EXPORTS SimilarRects
{
public:
SimilarRects(double _eps) : eps(_eps) {}
inline bool operator()(const Rect& r1, const Rect& r2) const
{
double delta = eps*(std::min(r1.width, r2.width) + std::min(r1.height, r2.height))*0.5;
return std::abs(r1.x - r2.x) <= delta &&
std::abs(r1.y - r2.y) <= delta &&
std::abs(r1.x + r1.width - r2.x - r2.width) <= delta &&
std::abs(r1.y + r1.height - r2.y - r2.height) <= delta;
}
double eps;
};

参考:http://blog.csdn.net/xidianzhimeng/article/details/41851569

http://blog.csdn.net/xidianzhimeng/article/details/40107763

http://docs.opencv.org/modules/core/doc/clustering.html#partition

opencv源码:cascadedetect的更多相关文章

  1. sobel算子原理及opencv源码实现

    sobel算子原理及opencv源码实现 简要描述 sobel算子主要用于获得数字图像的一阶梯度,常见的应用和物理意义是边缘检测. 原理 算子使用两个33的矩阵(图1)算子使用两个33的矩阵(图1)去 ...

  2. OpenCV源码解析

    OpenCV K-means源码解析 OpenCV 图片读取源码解析 OpenCV 视频播放源码解析 OpenCV 追踪算法源码解析 OpenCV SIFT算法源码解析 OpenCV 滤波源码分析:b ...

  3. CMake生成OpenCV解决方案&&编译OpenCV源码

    生成OpenCV工程需要用到CMake,所以第一步需要下载CMake软件,下载链接:CMake下载 目前最新的版本是3.7.1,这里选择下载Platform下的Windows win32-x86 ZI ...

  4. opencv::源码编译

    环境:win10.vs2017.cmake .java.python3.7默认安装. opencv源码:opencv-.zip opencv拓展库源码:opencv_contrib-.zip (注意: ...

  5. Visual Studio调试到OpenCV源码中

    TL;DR VS2015下,build-farm/vs2015-x64/bin/Debug/目录,*.pdb文件,都拷贝到install/x64/vc14/bin目录,就可以调试进去opencv源码了 ...

  6. 学习 opencv---(6)玩转opencv源代码:生成opencv 工程解决方案与opencv 源码编译

    在这篇中,我们探讨如何通过已安装的opencv选择不同的编译器类型,生成高度还原的OpenCV开发时的解决方案工程文件,欣赏OpenCV新版本中总计 六十六多万行的精妙源代码.我们可以对其源代码进行再 ...

  7. opencv源码阅读之——iOS的两条接口UIImageToMat()和MatToUIImage()

    本文为作者原创,未经允许不得转载:原文由作者发表在博客园: http://www.cnblogs.com/panxiaochun/p/5387743.html 在ios下开发基于opencv的程序时经 ...

  8. 光流算法:Brox光流的OpenCV源码解析

    OpenCV中DeepFlow代码其实是Brox光流,而非真正的DeepFlow光流,在将近一个月的研究.移植及优化过程中,对Brox光流有了较深刻的认识.我对OpenCV中源码进行了详细的分析,并以 ...

  9. OpenCV源码阅读(1)---matx.h---mat类与vec类

    matx.h matx类是opencv中的一个基础类,其位于core模块中,所执行的操作时opencv矩阵和向量的运算.如果熟悉基于matlab的图像处理,那么很容易想到,所有对图像的操作归根结底都是 ...

  10. OpenCV学习:OpenCV源码编译(vc9)

    安装后的OpenCV程序下的build文件夹中,只找到了vc10.vc11和vc12三种编译版本的dll和lib文件,需要VS2010及以上的IDE版本,而没有我们常用的VS2008版本. 于是,需要 ...

随机推荐

  1. js实现前端分页页码管理

    用JS实现前端分页页码管理,可以很美观的区分页码显示(这也是参考大多数网站的分页页码展示),能够有很好的用户体验,这也是有业务需要就写了一下,还是新手,经验不足,欢迎指出批评! 首先先看效果图: 这是 ...

  2. Node.js:理解stream

    Stream在node.js中是一个抽象的接口,基于EventEmitter,也是一种Buffer的高级封装,用来处理流数据.流模块便是提供各种API让我们可以很简单的使用Stream. 流分为四种类 ...

  3. angularjs 依赖注入--自己学着实现

    在用angular依赖注入时,感觉很好用,他的出现是 为了"削减计算机程序的耦合问题" ,我怀着敬畏与好奇的心情,轻轻的走进了angular源码,看看他到底是怎么实现的,我也想写个 ...

  4. [C#] C# 知识回顾 - 表达式树 Expression Trees

    C# 知识回顾 - 表达式树 Expression Trees 目录 简介 Lambda 表达式创建表达式树 API 创建表达式树 解析表达式树 表达式树的永久性 编译表达式树 执行表达式树 修改表达 ...

  5. JS实现页面进入、返回定位到具体位置

    最为一个刚入职不久的小白...慢慢磨练吧... JS实现页面返回定位到具体位置 其实浏览器也自带了返回的功能,也就是说,自带了返回定位的功能.正常的跳转,返回确实可以定位,但是有些特殊场景就不适用了. ...

  6. 微信小程序(微信应用号)组件讲解

    这篇文章主要讲解微信小程序的组件. 首先,讲解新建项目.现在有句话:招聘三天以上微信小程序开发,这个估计只能去挖微信的工程师了.技术新,既然讲解,那我们就从开始建项目讲解. 打开微信web开发者工具, ...

  7. Android中的LinearLayout布局

    LinearLayout : 线性布局 在一般情况下,当有很多控件需要在一个界面列出来时,我们就可以使用线性布局(LinearLayout)了,  线性布局是按照垂直方向(vertical)或水平方向 ...

  8. Spark-shell和Spark-Submit的使用

    Spark-shell有两种使用方式: 1:直接Spark-shell 会启动一个SparkSubmit进程来模拟Spark运行环境,是一个单机版的. 2:Spark-shell --master S ...

  9. SymmetricDS 快速和灵活的数据库复制

    开始谈谈开源的SymmetricDS,谈谈实际使用中,遇到的一些问题和解决办法.持续更新: SymmetricDS 快速和灵活的数据库复制 实际使用 和 埋过的坑 (一)知识篇 SymmetricDS ...

  10. SQLServer2005创建定时作业任务

    SQLServer定时作业任务:即数据库自动按照定时执行的作业任务,具有周期性不需要人工干预的特点 创建步骤:(使用最高权限的账户登录--sa) 一.启动SQL Server代理(SQL Server ...