题解:点击

#include <stdio.h>
#include <string.h>
#include <algorithm>
#include <iostream>
#include <math.h>
using namespace std;
const double eps = 1e-6;
const int MAXN = 100010;
const double INF = 1e20;
struct Point
{
double x,y;
};
double dist(Point a,Point b)
{
return sqrt((a.x-b.x)*(a.x-b.x) + (a.y-b.y)*(a.y-b.y));
}
Point p[MAXN];
Point tmpt[MAXN];
bool cmpxy(Point a,Point b)
{
if(a.x != b.x)return a.x < b.x;
else return a.y < b.y;
}
bool cmpy(Point a,Point b)
{
return a.y < b.y;
}
double Closest_Pair(int left,int right)
{
double d = INF;
if(left == right)return d;
if(left + 1 == right)
return dist(p[left],p[right]);
int mid = (left+right)/2;
double d1 = Closest_Pair(left,mid);
double d2 = Closest_Pair(mid+1,right);
d = min(d1,d2);
int k = 0;
for(int i = left;i <= right;i++)
{
if(fabs(p[mid].x - p[i].x) <= d)
tmpt[k++] = p[i];
}
sort(tmpt,tmpt+k,cmpy);
for(int i = 0;i <k;i++)
{
for(int j = i+1;j < k && tmpt[j].y - tmpt[i].y < d;j++)
{
d = min(d,dist(tmpt[i],tmpt[j]));
}
}
return d;
}
int main()
{
int n;
while(scanf("%d",&n)==1 && n)
{
for(int i = 0;i < n;i++)
scanf("%lf%lf",&p[i].x,&p[i].y);
sort(p,p+n,cmpxy);
printf("%.2lf\n",Closest_Pair(0,n-1)/2);
}
return 0;
}

平面最近点对(HDU 1007)的更多相关文章

  1. hdu 1007 Quoit Design(平面最近点对)

    题意:求平面最近点对之间的距离 解:首先可以想到枚举的方法,枚举i,枚举j算点i和点j之间的距离,时间复杂度O(n2). 如果采用分治的思想,如果我们知道左半边点对答案d1,和右半边点的答案d2,如何 ...

  2. HDU 1007 Quoit Design【计算几何/分治/最近点对】

    Quoit Design Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Tot ...

  3. 【HDU 1007】 Quoit Design

    [题目链接] http://acm.hdu.edu.cn/showproblem.php?pid=1007 [算法] 答案为平面最近点对距离除以2 [代码] #include <algorith ...

  4. kd树解平面最近点对

    早上起来头有点疼,突然就想到能不能用kd树解平面最近点对问题,就找了道题试了一下,结果可以,虽然效率不高,但还是AC了~ 题目链接:http://acm.hdu.edu.cn/showproblem. ...

  5. HDU-4631 Sad Love Story 平面最近点对

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4631 数据是随机的,没有极端数据,所以可以分段考虑,最小值是一个单调不增的函数,然后每次分治算平面最近 ...

  6. HDU 1007 Quoit Design

    传送门 Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Problem Des ...

  7. 计算几何 平面最近点对 nlogn分治算法 求平面中距离最近的两点

    平面最近点对,即平面中距离最近的两点 分治算法: int SOLVE(int left,int right)//求解点集中区间[left,right]中的最近点对 { double ans; //an ...

  8. HDU 1007 Quoit Design(二分+浮点数精度控制)

    Quoit Design Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) To ...

  9. HDU1007--Quoit Design(平面最近点对)

    Problem Description Have you ever played quoit in a playground? Quoit is a game in which flat rings ...

  10. Vijos 1012 清帝之惑之雍正 平面最近点对(分治)

    背景 雍正帝胤祯,生于康熙十七年(1678)是康熙的第四子.康熙61年,45岁的胤祯继承帝位,在位13年,死于圆明园.庙号世宗. 胤祯是在康乾盛世前期--康熙末年社会出现停滞的形式下登上历史舞台的.复 ...

随机推荐

  1. mysql复制表数据,多表数据复制到一张表

    对于mysql 复制表数据可以使用 insert into select 方式 示例: $sql="insert into icarzoo.provider(providerId,provi ...

  2. Python基础—11-面向对象(01)

    面向对象 面向对象 与面向过程对比: 面向过程:数学逻辑的映射,学会做个好员工 面向对象:生活逻辑的映射,学会做个好领导 生活实例: 类: 人 手机 电脑 对象: 我的手机.女朋友的手机 你的那部T4 ...

  3. springboot整合swagger笔记

    首先,在pom.xml中添加依赖 <!--swagger--> <dependency> <groupId>io.springfox</groupId> ...

  4. Node.js(二)----安装Cnpm

    ---恢复内容开始--- 1.安装CNPM 因为天草的 Great Wall 导致下载速度龟速....所以安装Cnpm淘宝镜像 2.命令 2.1 如果版本合适 设置镜像地址 npm config se ...

  5. Redis缓存数据库的安装与配置(3)

    3 Redis主动同步设置方法 Redis主从同步 1.Redis主从同步特点 一个master可以拥有多个slave 多个slave可以连接同一个master,还可以连接到其他slave 主从复制不 ...

  6. 洛谷U32670 小凯的数字(比赛)

    题目网址 https://www.luogu.org/problemnew/show/U32670 题目背景 NOIP2018 原创模拟题T1 NOIP DAY1 T1 or DAY 2 T1 难度 ...

  7. vue---day01

    1.let和const var 全局作用域和函数作用域 存在变量提升 其实是个bug 可以重复声明 let 块级作用域 不存在变量提升 不能重复声明 const 常量 和let一样还有另外两个 定义的 ...

  8. Python3爬虫(五)解析库的使用之XPath

    Infi-chu: http://www.cnblogs.com/Infi-chu/ XPath: 全称是 XML Path Language,XML路径语言,它是一门在XML文档中和HTML文档中查 ...

  9. Kubernetes-运维指南

    Node隔离与恢复 cat unschedule_node.yaml apiVersion: kind: Node metadata: name: k8s-node-1 labels: kuberne ...

  10. PHP.46-TP框架商城应用实例-后台21-权限管理-权限和角色的关系

    权限和角色的关系 权限功能 角色功能 权限与角色的关联要通过权限-角色表进行{多对多} /********* 角色-权限表 *********/ drop if exists p39_role_pri ...