grid search 超参数寻优
http://scikit-learn.org/stable/modules/grid_search.html
1. 超参数寻优方法 gridsearchCV 和 RandomizedSearchCV
2. 参数寻优的技巧进阶
2.1. Specifying an objective metric
By default, parameter search uses the score function of the estimator to evaluate a parameter setting. These are thesklearn.metrics.accuracy_score for classification and sklearn.metrics.r2_score for regression.
2.2 Specifying multiple metrics for evaluation
Multimetric scoring can either be specified as a list of strings of predefined scores names or a dict mapping the scorer name to the scorer function and/or the predefined scorer name(s).
http://scikit-learn.org/stable/modules/model_evaluation.html#multimetric-scoring
2.3 Composite estimators and parameter spaces 。pipeline 方法
http://scikit-learn.org/stable/modules/pipeline.html#pipeline
>>> from sklearn.pipeline import Pipeline
>>> from sklearn.svm import SVC
>>> from sklearn.decomposition import PCA
>>> estimators = [('reduce_dim', PCA()), ('clf', SVC())]
>>> pipe = Pipeline(estimators)
>>> pipe # check pipe
Pipeline(memory=None,
steps=[('reduce_dim', PCA(copy=True,...)),
('clf', SVC(C=1.0,...))])
>>> from sklearn.pipeline import make_pipeline
>>> from sklearn.naive_bayes import MultinomialNB
>>> from sklearn.preprocessing import Binarizer
>>> make_pipeline(Binarizer(), MultinomialNB())
Pipeline(memory=None,
steps=[('binarizer', Binarizer(copy=True, threshold=0.0)),
('multinomialnb', MultinomialNB(alpha=1.0,
class_prior=None,
fit_prior=True))])
>>> pipe.set_params(clf__C=10) # 给clf 设定参数
>>> from sklearn.model_selection import GridSearchCV
>>> param_grid = dict(reduce_dim__n_components=[2, 5, 10],
... clf__C=[0.1, 10, 100])
>>> grid_search = GridSearchCV(pipe, param_grid=param_grid)
#!/usr/bin/env python2
# -*- coding: utf-8 -*-
"""
Created on Tue Sep 5 10:22:07 2017
@author: xinpingbao
"""
import numpy as np
from sklearn import datasets
from sklearn.linear_model import Ridge
from sklearn.model_selection import GridSearchCV
from sklearn.metrics import make_scorer
# load the diabetes datasets
dataset = datasets.load_diabetes()
X = dataset.data
y = dataset.target
# prepare a range of alpha values to test
alphas = np.array([1,0.1,0.01,0.001,0.0001,0])
# create and fit a ridge regression model, testing each alpha
model = Ridge()
grid = GridSearchCV(estimator=model, param_grid=dict(alpha=alphas)) # defaulting: sklearn.metrics.r2_score
# grid = GridSearchCV(estimator=model, param_grid=dict(alpha=alphas), scoring = 'metrics.mean_squared_error') # defaulting: sklearn.metrics.r2_score
grid.fit(X, y)
print(grid)
# summarize the results of the grid search
print(grid.best_score_)
print(grid.best_estimator_.alpha)
############################ 自定义error score函数 ############################
model = Ridge()
alphas = np.array([1,0.1,0.01,0.001,0.0001,0])
param_grid1 = dict(alpha=alphas)
def my_mse_error(real, pred):
w_high = 1.0
w_low = 1.0
weight = w_high * (real - pred < 0.0) + w_low * (real - pred >= 0.0)
mse = (np.sum((real - pred)**2 * weight) / float(len(real)))
return mse
def my_r2_score(y_true, y_pred):
nume = sum((y_true - y_pred) ** 2)
deno= sum((y_true - np.average(y_true, axis=0)) ** 2)
r2_score = 1 - (nume/deno)
return r2_score
error_score1 = make_scorer(my_mse_error, greater_is_better=False) # error less is better.
error_score2 = make_scorer(my_r2_score, greater_is_better=True) # error less is better.
#custom_scoring = {'weighted_MSE' : salesError}
grid_search = GridSearchCV(model, param_grid = param_grid1, scoring= error_score2, n_jobs=-1) #neg_mean_absolute_error
grid_result = grid_search.fit(X,y)
# summarize results
print("Best: %f using %s" % (grid_result.best_score_, grid_result.best_params_)) # learning_rate = 0.1
grid search 超参数寻优的更多相关文章
- paper 36 :[教程] 基于GridSearch的svm参数寻优
尊重原创~~~ 转载出处:http://www.matlabsky.com/thread-12411-1-1.html 交叉验证(Cross Validation)方法思想简介http://www.m ...
- 【深度学习篇】--神经网络中的调优一,超参数调优和Early_Stopping
一.前述 调优对于模型训练速度,准确率方面至关重要,所以本文对神经网络中的调优做一个总结. 二.神经网络超参数调优 1.适当调整隐藏层数对于许多问题,你可以开始只用一个隐藏层,就可以获得不错的结果,比 ...
- 评价指标的局限性、ROC曲线、余弦距离、A/B测试、模型评估的方法、超参数调优、过拟合与欠拟合
1.评价指标的局限性 问题1 准确性的局限性 准确率是分类问题中最简单也是最直观的评价指标,但存在明显的缺陷.比如,当负样本占99%时,分类器把所有样本都预测为负样本也可以获得99%的准确率.所以,当 ...
- Spark2.0机器学习系列之2:基于Pipeline、交叉验证、ParamMap的模型选择和超参数调优
Spark中的CrossValidation Spark中采用是k折交叉验证 (k-fold cross validation).举个例子,例如10折交叉验证(10-fold cross valida ...
- 网格搜索与K近邻中更多的超参数
目录 网格搜索与K近邻中更多的超参数 一.knn网格搜索超参寻优 二.更多距离的定义 1.向量空间余弦相似度 2.调整余弦相似度 3.皮尔森相关系数 4.杰卡德相似系数 网格搜索与K近邻中更多的超参数 ...
- 【转载】AutoML--超参数调优之Bayesian Optimization
原文:Auto Machine Learning笔记 - Bayesian Optimization 优化器是机器学习中很重要的一个环节.当确定损失函数时,你需要一个优化器使损失函数的参数能够快速有效 ...
- [DeeplearningAI笔记]02_3.1-3.2超参数搜索技巧与对数标尺
Hyperparameter search 超参数搜索 觉得有用的话,欢迎一起讨论相互学习~Follow Me 3.1 调试处理 需要调节的参数 级别一:\(\alpha\)学习率是最重要的需要调节的 ...
- Deep Learning.ai学习笔记_第二门课_改善深层神经网络:超参数调试、正则化以及优化
目录 第一周(深度学习的实践层面) 第二周(优化算法) 第三周(超参数调试.Batch正则化和程序框架) 目标: 如何有效运作神经网络,内容涉及超参数调优,如何构建数据,以及如何确保优化算法快速运行, ...
- DeepMind提出新型超参数最优化方法:性能超越手动调参和贝叶斯优化
DeepMind提出新型超参数最优化方法:性能超越手动调参和贝叶斯优化 2017年11月29日 06:40:37 机器之心V 阅读数 2183 版权声明:本文为博主原创文章,遵循CC 4.0 BY ...
随机推荐
- JQuery 提示用户名密码不为空
$(document).ready(function(){ //HTML()替换 HTML函数 //append()追加 :input = :t ...
- 使用Volley框架中的ImageLoader来异步的加载图片
Volley框架在请求网络图片方面也做了很多工作,提供了好几种方法.本文介绍使用ImageLoader来进行网络图片的加载.ImageLoader的内部使用ImageRequest来实现,它的构造器可 ...
- ASP.NET的几个试题(《C#与.NET程序员面试宝典》)
更多参考:博客园笔记 :ASP.NET是什么 ASP.NET不是一种语言,而是创建动态Web页的一种强大的服务器端技术,它是Microsoft.NET Framework中一套用于生成Web应用程序和 ...
- Maven依赖调解
引用来自maven实战中的一段话.
- hdu 4609 3-idiots——FFT
题目:http://acm.hdu.edu.cn/showproblem.php?pid=4609 答案就是随便选三条边的方案 - 不合法的方案. 不合法的方案就是算出 x+y = k 的方案数 g[ ...
- 关于Homebrew出现GitHub API rate limit错误的解决方法
参考博文: http://havee.me/mac/2013-12/how-to-install-and-use-homebrew.html Error: GitHub API rate limit ...
- 在 windows7 中使用 vs2003 时,“在文件中查找”导致无响应的问题
解决 Win7 32bit/64bit环境下,在使用VS2003的查找功能时,会导致VS2003无响应. 解决方法:找到VS2003的安装目录,修改"...\Microsoft Visual ...
- linux 下安装php扩展
linux下安装php扩展 步骤: 1.在扩展解压包目录执行 phpize 2.执行 ./configure --with-php-config=/usr/local/php/bin/php-conf ...
- Java-Maven-Runoob:Maven 引入外部依赖
ylbtech-Java-Maven-Runoob:Maven 引入外部依赖 1.返回顶部 1. Maven 引入外部依赖 如果我们需要引入第三库文件到项目,该怎么操作呢? pom.xml 的 dep ...
- 22 mysql有那些”饮鸩止渴”提高性能的方法?
22 mysql有那些”饮鸩止渴”提高性能的方法? 正常的短连接模式是连接到数据库后,执行很少的SQL语句就断开,下次需要的时候再重新连接.如果使用的是短连接,在业务高峰期的时候,就可能出现连接数突然 ...