Tarjan算法求出强连通分量(包含若干个节点)
【功能】
Tarjan算法的用途之一是,求一个有向图G=(V,E)里极大强连通分量。强连通分量是指有向图G里顶点间能互相到达的子图。而如果一个强连通分量已经没有被其它强通分量完全包含的话,那么这个强连通分量就是极大强连通分量。
【算法思想】
用dfs遍历G中的每个顶点,通dfn[i]表示dfs时达到顶点i的时间,low[i]表示i所能直接或间接达到时间最小的顶点。(实际操作中low[i]不一定最小,但不会影响程序的最终结果)
程序开始时,time初始化为0,在dfs遍历到v时,low[v]=dfn[v]=time++,
v入栈(这里的栈不是dfs的递归时系统弄出来的栈)扫描一遍v所能直接达到的顶点k,如果 k没有被访问过那么先dfs遍历k,low[v]=min(low[v],low[k]);如果k在栈里,那么low[v]=min(low[v],dfn[k])(就是这里使得low[v]不一定最小,但不会影响到这里的low[v]会小于dfn[v])。扫描完所有的k以后,如果low[v]=dfn[v]时,栈里v以及v以上的顶点全部出栈,且刚刚出栈的就是一个极大强连通分量。
【大概的证明】
1. 在栈里,当dfs遍历到v,而且已经遍历完v所能直接到达的顶点时,low[v]=dfn[v]时,v一定能到达栈里v上面的顶点:
因为当dfs遍历到v,而且已经dfs递归调用完v所能直接到达的顶点时(假设上面没有low=dfn),这时如果发现low[v]=dfn[v],栈上面的顶点一定是刚才从顶点v递归调用时进栈的,所以v一定能够到达那些顶点。
2 .dfs遍历时,如果已经遍历完v所能直接到达的顶点而low[v]=dfn[v],我们知道v一定能到达栈里v上面的顶点,这些顶点的low一定小于 自己的dfn,不然就会出栈了,也不会小于dfn[v],不然low [v]一定小于dfn[v],所以栈里v以其v以上的顶点组成的子图是一个强连通分量,如果它不是极大强连通分量的话low[v]也一定小于dfn[v](这里不再详细说),所以栈里v以其v以上的顶点组成的子图是一个极大强连通分量。
【时间复杂度】
因为所有的点都刚好进过一次栈,所有的边都访问的过一次,所以时间复杂度为O(n+m)
------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
有向图强连通分量的Tarjan算法(详解):
转自:https://www.byvoid.com/blog/scc-tarjan/
[有向图强连通分量]
在有向图G中,如果两个顶点间至少存在一条路径,称两个顶点强连通(strongly connected)。如果有向图G的每两个顶点都强连通,称G是一个强连通图。非强连通图有向图的极大强连通子图,称为强连通分量(strongly connected components)。
下图中,子图{1,2,3,4}为一个强连通分量,因为顶点1,2,3,4两两可达。{5},{6}也分别是两个强连通分量。

直接根据定义,用双向遍历取交集的方法求强连通分量,时间复杂度为O(N^2+M)。更好的方法是Kosaraju算法或Tarjan算法,两者的时间复杂度都是O(N+M)。本文介绍的是Tarjan算法。
[Tarjan算法]
Tarjan算法是基于对图深度优先搜索的算法,每个强连通分量为搜索树中的一棵子树。搜索时,把当前搜索树中未处理的节点加入一个堆栈,回溯时可以判断栈顶到栈中的节点是否为一个强连通分量。
定义DFN(u)为节点u搜索的次序编号(时间戳),Low(u)为u或u的子树能够追溯到的最早的栈中节点的次序号。由定义可以得出,
Low(u)=Min
{
DFN(u),
Low(v),(u,v)为树枝边,u为v的父节点
DFN(v),(u,v)为指向栈中节点的后向边(非横叉边)
}
当DFN(u)=Low(u)时,以u为根的搜索子树上所有节点是一个强连通分量。
算法伪代码如下
tarjan(u)
{
DFN[u]=Low[u]=++Index // 为节点u设定次序编号和Low初值
Stack.push(u) // 将节点u压入栈中
for each (u, v) in E // 枚举每一条边
if (v is not visted) // 如果节点v未被访问过
tarjan(v) // 继续向下找
Low[u] = min(Low[u], Low[v])
else if (v in S) // 如果节点v还在栈内
Low[u] = min(Low[u], DFN[v])
if (DFN[u] == Low[u]) // 如果节点u是强连通分量的根
repeat
v = S.pop // 将v退栈,为该强连通分量中一个顶点
print v
until (u== v)
}
接下来是对算法流程的演示。
从节点1开始DFS,把遍历到的节点加入栈中。搜索到节点u=6时,DFN[6]=LOW[6],找到了一个强连通分量。退栈到u=v为止,{6}为一个强连通分量。

返回节点5,发现DFN[5]=LOW[5],退栈后{5}为一个强连通分量。

返回节点3,继续搜索到节点4,把4加入堆栈。发现节点4向节点1有后向边,节点1还在栈中,所以LOW[4]=1。节点6已经出栈,(4,6)是横叉边,返回3,(3,4)为树枝边,所以LOW[3]=LOW[4]=1。

继续回到节点1,最后访问节点2。访问边(2,4),4还在栈中,所以LOW[2]=DFN[4]=5。返回1后,发现DFN[1]=LOW[1],把栈中节点全部取出,组成一个连通分量{1,3,4,2}。

至此,算法结束。经过该算法,求出了图中全部的三个强连通分量{1,3,4,2},{5},{6}。
可以发现,运行Tarjan算法的过程中,每个顶点都被访问了一次,且只进出了一次堆栈,每条边也只被访问了一次,所以该算法的时间复杂度为O(N+M)。
求有向图的强连通分量还有一个强有力的算法,为Kosaraju算法。Kosaraju是基于对有向图及其逆图两次DFS的方法,其时间复杂度也是O(N+M)。与Trajan算法相比,Kosaraju算法可能会稍微更直观一些。但是Tarjan只用对原图进行一次DFS,不用建立逆图,更简洁。在实际的测试中,Tarjan算法的运行效率也比Kosaraju算法高30%左右。此外,该Tarjan算法与求无向图的双连通分量(割点、桥)的Tarjan算法也有着很深的联系。学习该Tarjan算法,也有助于深入理解求双连通分量的Tarjan算法,两者可以类比、组合理解。
求有向图的强连通分量的Tarjan算法是以其发明者Robert Tarjan命名的。Robert Tarjan还发明了求双连通分量的Tarjan算法,以及求最近公共祖先的离线Tarjan算法,在此对Tarjan表示崇高的敬意。
附:tarjan算法的C++程序 void tarjan(int i)
{
int j;
DFN[i]=LOW[i]=++Dindex;
instack[i]=true;
Stap[++Stop]=i;
for (edge *e=V[i];e;e=e->next)
{
j=e->t;
if (!DFN[j])
{
tarjan(j);
if (LOW[j]<LOW[i])
LOW[i]=LOW[j];
}
else if (instack[j] && DFN[j]<LOW[i])
LOW[i]=DFN[j];
}
if (DFN[i]==LOW[i])
{
Bcnt++;
do
{
j=Stap[Stop--];
instack[j]=false;
Belong[j]=Bcnt;
}
while (j!=i);
}
}
void solve()
{
int i;
Stop=Bcnt=Dindex=;
memset(DFN,,sizeof(DFN));
for (i=;i<=N;i++)
if (!DFN[i])
tarjan(i);
}
http://www.cnblogs.com/justforgl/archive/2013/02/02/2890494.html
POJ 1236 Tarjan http://blog.csdn.net/kk303/article/category/905394
Tarjan算法求出强连通分量(包含若干个节点)的更多相关文章
- Tarjan算法求有向图强连通分量并缩点
// Tarjan算法求有向图强连通分量并缩点 #include<iostream> #include<cstdio> #include<cstring> #inc ...
- 『Tarjan算法 有向图的强连通分量』
有向图的强连通分量 定义:在有向图\(G\)中,如果两个顶点\(v_i,v_j\)间\((v_i>v_j)\)有一条从\(v_i\)到\(v_j\)的有向路径,同时还有一条从\(v_j\)到\( ...
- Tarjan 算法求强联通分量
转载自:http://blog.csdn.net/xinghongduo/article/details/6195337 还是没懂Tarjan算法的原理.但是感觉.讲的很有道理. 说到以Tarjan命 ...
- [Tarjan系列] Tarjan算法求无向图的双连通分量
这篇介绍如何用Tarjan算法求Double Connected Component,即双连通分量. 双联通分量包括点双连通分量v-DCC和边连通分量e-DCC. 若一张无向连通图不存在割点,则称它为 ...
- Tarjan算法求割点
(声明:以下图片来源于网络) Tarjan算法求出割点个数 首先来了解什么是连通图 在图论中,连通图基于连通的概念.在一个无向图 G 中,若从顶点i到顶点j有路径相连(当然从j到i也一定有路径),则称 ...
- Tarjan算法 求 有向图的强连通分量
百度百科 https://baike.baidu.com/item/tarjan%E7%AE%97%E6%B3%95/10687825?fr=aladdin 参考博文 http://blog.csdn ...
- HDU 1269 迷宫城堡 tarjan算法求强连通分量
基础模板题,应用tarjan算法求有向图的强连通分量,tarjan在此处的实现方法为:使用栈储存已经访问过的点,当访问的点离开dfs的时候,判断这个点的low值是否等于它的出生日期dfn值,如果相等, ...
- Kosaraju算法、Tarjan算法分析及证明--强连通分量的线性算法
一.背景介绍 强连通分量是有向图中的一个子图,在该子图中,所有的节点都可以沿着某条路径访问其他节点.强连通性是一种非常重要的等价抽象,因为它满足 自反性:顶点V和它本身是强连通的 对称性:如果顶点V和 ...
- 【原创】tarjan算法初步(强连通子图缩点)
[原创]tarjan算法初步(强连通子图缩点) tarjan算法的思路不是一般的绕!!(不过既然是求强连通子图这样的回路也就可以稍微原谅了..) 但是研究tarjan之前总得知道强连通分量是什么吧.. ...
随机推荐
- 内联元素inline-block空隙问题
1.产生的原因 当我们使用"display:inline-block"把块集元素转换为内联元素时,每两个内联元素之间有一定的空隙,既不是margin也不是padding,最终发现是 ...
- Oracle中exp,imp(导入导出)数据迁移注意事项
这几天做开发库schema备份,出现些问题,记录一下.一,exp时,os语言环境和数据库不同时会自动发生转换. 如果操作系统的字符集小于数据库字符集,就可能出现乱码现象.imp时,同理,也是有可能 ...
- 时间js
function DateUtil(){ this.url = ""; this.op={ partten:{mdy:"m/d/y",ymd:"y/m ...
- 深入浅出K-Means算法
在数据挖掘中,K-Means算法是一种cluster analysis的算法,其主要是来计算数据聚集的算法,主要通过不断地取离种子点最近均值的算法. 问题 K-Means算法主要解决的问题如下图所示. ...
- FIR滤波器相关解释
LTI(Linear Time-Invariant) 线性时不变: 线性时不变系统是根据系统输入和输出是否具有线性关系来定义的.满足叠加原理的系统具有线性特性.线性满足y=kx函数. 根据系统的输入和 ...
- java多线程-------------基础的Thread.CURRNET
总结:感觉不是太难,不过我写出来了,但竟然不理解它的意思?多线程就是多个任务同时进行 public class Test2 { public static void main(String[] arg ...
- Java 数组的三种创建方法,数组拷贝方法
public static void main(String[] args) {//创建数组的第一种方法int[] arr=new int[6];int intValue=arr[5];//Syste ...
- 1112 Stucked Keyboard
题意:坏掉的键若被按下,总是重复打出k次.比如,k为3,打出的序列如下—— thiiis iiisss a teeeeeest 坏掉的键是i和e,虽然iiisss中s也出现了3次,但它不是坏掉的键,因 ...
- php对数组中的值进行排序
案例 <?php $a = array('1124','1125','1126'); $s1 = 1124; $s2 = 1125; $ks1 = array_search($s1,$a); $ ...
- Linux下面的yum命令详解
yum(全称为 Yellow dog Updater, Modified)是一个在Fedora和RedHat以及SUSE中的Shell前端软件包管理器.基於RPM包管理,能够从指定的服务器自动下载RP ...