【题目链接】 http://codeforces.com/problemset/problem/786/A

【题目大意】

  有两个人,每个人有一个数集,里面有一些数,现在有一个环,有个棋子放在1,
  有个不确定位置的终点,两个人轮流从自己的数集中选择一个数,作为这个棋子移动的步数
  问终点在不同位置,不同人先手的时候谁能赢,或者游戏陷入循环

【题解】 

  我们从st_0_0=st_1_0=0开始倒着推导,
  如果一个状态是必败态,那么它的前继节点一定是必胜态
  如果一个点的所有后继都是必胜态,那么这个节点一定是必败态。
  每当一个点被其必胜后继推导到,那么其度数减一,当度数为0时则表示其为必败态
  我们根据这些结论倒着推导每个状态的答案并记录,最后按顺序输出即可。

【代码】

#include <cstdio>
#include <vector>
#include <cstring>
#include <string>
using namespace std;
const int N=100010;
int n,sg[2][N],d[2][N],k,x;
vector<int> g[2];
int dfs(int k,int pos,int v){
int &ret=sg[k][pos];
if(~ret)return ret;
ret=v;
if(v==0){
for(int i=0;i<g[k^1].size();i++){
int x=g[k^1][i];
int j=(pos+n-x)%n;
if(j==0)continue;
dfs(k^1,j,1);
}
}else{
for(int i=0;i<g[k^1].size();i++){
int x=g[k^1][i];
int j=(pos+n-x)%n;
if(j==0)continue;
if(--d[k^1][j]==0)dfs(k^1,j,0);
}
}return ret;
}
int main(){
scanf("%d",&n);
for(int i=0;i<2;i++){
scanf("%d",&k);
g[i].clear();
while(k--){
scanf("%d",&x);
g[i].push_back(x);
}for(int j=1;j<n;j++)d[i][j]=g[i].size();
}memset(sg,-1,sizeof(sg));
dfs(0,0,0);
dfs(1,0,0);
string s[3]={"Loop","Lose","Win"};
for(int k=0;k<2;k++){
for(int i=1;i<n;i++){
printf("%s%c",s[sg[k][i]+1].c_str(),i+1==n?'\n':' ');
}
}return 0;
}

Codeforces 786A Berzerk(博弈论)的更多相关文章

  1. [刷题]Codeforces 786A - Berzerk

    http://codeforces.com/problemset/problem/786/A Description Rick and Morty are playing their own vers ...

  2. cf786a

    title: CodeForces 786A Berzerk data: 2018-3-3 10:29:40 tags: 博弈论 bfs 无限 with draw copyright: true ca ...

  3. ACM 博弈(难)题练习 (第一弹)

    第二弹: 套路&&经验总结: 1. N堆***的游戏,一般可以打表找SG函数的规律.比如CodeForces 603C 2.看起来是单轮的游戏,实际上可能拆分成一些独立的子游戏.比如C ...

  4. Codeforces Round #406 (Div. 1) A. Berzerk 记忆化搜索

    A. Berzerk 题目连接: http://codeforces.com/contest/786/problem/A Description Rick and Morty are playing ...

  5. [Codeforces 1191D] Tokitsukaze, CSL and Stone Game(博弈论)

    [Codeforces 1191D] Tokitsukaze, CSL and Stone Game(博弈论) 题面 有n堆石子,两个人轮流取石子,一次只能从某堆里取一颗.如果某个人取的时候已经没有石 ...

  6. codeforces 1451D,一道有趣的博弈论问题

    大家好,欢迎来到codeforces专题. 今天选择的问题是Contest 1451场的D题,这是一道有趣简单的伪博弈论问题,全场通过的人有3203人.难度不太高,依旧以思维为主,坑不多,非常友好. ...

  7. Codeforces 1411G - No Game No Life(博弈论+生成函数+FWTxor)

    Codeforces 题面传送门 & 洛谷题面传送门 一道肥肠套路的题目. 首先这题涉及博弈论.注意到这里每一个棋子的移动方式都是独立的,因此可以考虑 SG 定理.具体来说,我们先求出每个棋子 ...

  8. Codeforces 1458E - Nim Shortcuts(博弈论+BIT)

    Codeforces 题目传送门 & 洛谷题目传送门 首先看到这样的题我们不妨从最特殊的情况入手,再逐渐推广到一般的情况.考虑如果没有特殊点的情况,我们将每个可能的局面看作一个点 \((a,b ...

  9. Codeforces 549C. The Game Of Parity[博弈论]

    C. The Game Of Parity time limit per test 1 second memory limit per test 256 megabytes input standar ...

随机推荐

  1. SVN 服务器安装及配置(WIN7)

    软件安装包 客户端: 服务端: 安装服务端 不整合 Apache 服务器可以忽略此选项. 安装程序会自动在path下配置好环境变量:D:\Subversion\bin; 查看是否安装成功: C:\Us ...

  2. js介绍自己的例子

    js并不是真正面向对象的语言,但是我们通过一些方法也是可以实现js的一些面向对象设计的.常见的构造函数有很多模式有构造函数模式,原型链,工厂模式等等.但就是因为,我初学者看起来非常吃力,理解起来都是很 ...

  3. ssh中的相对路径与绝对路径的问题

    一:前言:自己在学习ssh的时候常常被路径给迷惑,就比如在刚刚学习jsp的servlet时,绝对路径和相对路径我就弄混了,所以专门写了一篇博客来记载.而现在自己是在学ssh的时候在此遇到路径问题,本来 ...

  4. netty学习指南

    这段时间领导让我熟悉Socket开发,我花了三周时间左右去学习相关的知识,包括Java socket开发,重点学习了netty这个异步非阻塞通信框架. 在这里把我学习过程中遇到的有用资料整理了,供大家 ...

  5. 51nod 1040 最大公约数之和

    给出一个n,求1-n这n个数,同n的最大公约数的和.比如:n = 6 1,2,3,4,5,6 同6的最大公约数分别为1,2,3,2,1,6,加在一起 = 15   Input 1个数N(N <= ...

  6. noip2013 提高组

    T1 转圈游戏 题目传送门 果不其然 第一题还是模拟题 一波快速幂解决问题 #include<cstdio> #include<cstring> #include<alg ...

  7. JS高级技巧(简洁版)

    高级函数 由于在JS中,所有的函数都是对象,所以使用函数指针十分简单,也是这些东西使JS函数有趣且强大 安全的类型检测 JS内置的类型检测机制并不是完全可靠的 typeof 操作符返回一个字符串,表示 ...

  8. elasticsearch.helpers.ScanError: Scroll request has only succeeded on xx shards

    # 当index=''为空时出现此错误

  9. python升级3.6后 yum出错File "/usr/bin/yum", line 30 ^

    问题描述: # yum provides ifconfig File "/usr/bin/yum", line 30 except KeyboardInterrupt, e: ^ ...

  10. 一道面试题:C++相比C#或者java的优势到底在哪里

    被问到了这样一道面试题,当时就懵了,内心一直觉得C++肯定在很多方面要比C#或者java要牛b的. 但是真的不知道怎么回答. 问题是:你以前一直做得是.NET相关项目,现在为什么找C++开发相关工作呢 ...