原问题等价于断掉一些边,让原来所有的最短路全都无法联通S和T。

先求最短路,然后把在最短路上的边(dis[u[i]]+w[i]==dis[v[i]])加入新图里,跑最小割。显然。

注意是无向图。

#include<cstdio>
#include<cstring>
#include<queue>
#include<algorithm>
using namespace std;
#define INF 2147483647
#define MAXN 511
#define MAXM 505001
int n,m,S,T,Sta,End,Ws[260000],W,C;
queue<int>q;
namespace Dinic
{
int v[MAXM],cap[MAXM],en,first[MAXN],next[MAXM];
int d[MAXN],cur[MAXN];
void Init_Dinic(){memset(first,-1,sizeof(first)); en=0; S=1; T=n;}
void AddEdge(const int &U,const int &V,const int &W)
{v[en]=V; cap[en]=W; next[en]=first[U]; first[U]=en++;
v[en]=U; next[en]=first[V]; first[V]=en++;}
bool bfs()
{
memset(d,-1,sizeof(d)); q.push(S); d[S]=0;
while(!q.empty())
{
int U=q.front(); q.pop();
for(int i=first[U];i!=-1;i=next[i])
if(d[v[i]]==-1 && cap[i])
{
d[v[i]]=d[U]+1;
q.push(v[i]);
}
}
return d[T]!=-1;
}
int dfs(int U,int a)
{
if(U==T || !a) return a;
int Flow=0,f;
for(int &i=cur[U];i!=-1;i=next[i])
if(d[U]+1==d[v[i]] && (f=dfs(v[i],min(a,cap[i]))))
{
cap[i]-=f; cap[i^1]+=f;
Flow+=f; a-=f; if(!a) break;
}
if(!Flow) d[U]=-1;
return Flow;
}
int max_flow()
{
int Flow=0,tmp=0;
while(bfs())
{
memcpy(cur,first,(n+5)*sizeof(int));
while(tmp=dfs(S,INF)) Flow+=tmp;
}
return Flow;
}
};
namespace SPFA
{
int u[260000],next[260000],v[260000],first[501],w[260000],en,dis[501];
bool inq[501];
void AddEdge(const int &U,const int &V,const int &W,const int &C)
{u[++en]=U; v[en]=V; w[en]=W; Ws[en]=C; next[en]=first[U]; first[U]=en;}
void spfa(const int &s)
{
memset(dis,0x7f,sizeof(dis));
dis[s]=0; inq[s]=1; q.push(s);
while(!q.empty())
{
int U=q.front();
for(int i=first[U];i;i=next[i])
if(dis[v[i]]>dis[U]+w[i])
{
dis[v[i]]=dis[U]+w[i];
if(!inq[v[i]])
q.push(v[i]),inq[v[i]]=1;
}
q.pop(); inq[U]=0;
}
}
void Rebuild_Graph()
{
Dinic::Init_Dinic();
for(int i=1;i<=(m<<1);++i)
if(dis[u[i]]+w[i]==dis[v[i]])
Dinic::AddEdge(u[i],v[i],Ws[i]);
}
};
int main()
{
scanf("%d%d",&n,&m);
for(int i=1;i<=m;++i)
{
scanf("%d%d%d%d",&Sta,&End,&W,&C);
SPFA::AddEdge(Sta,End,W,C);
SPFA::AddEdge(End,Sta,W,C);
}
SPFA::spfa(1); SPFA::Rebuild_Graph();
printf("%d\n%d\n",SPFA::dis[n],Dinic::max_flow());
return 0;
}

  

【最短路】【spfa】【最小割】【Dinic】bzoj1266 [AHOI2006]上学路线route的更多相关文章

  1. bzoj1266 [AHOI2006]上学路线route floyd建出最短路图+最小割

    1266: [AHOI2006]上学路线route Time Limit: 3 Sec  Memory Limit: 162 MBSubmit: 2490  Solved: 898[Submit][S ...

  2. bzoj1266 [AHOI2006]上学路线route floyd+最小割

    1266: [AHOI2006]上学路线route Time Limit: 3 Sec  Memory Limit: 162 MBSubmit: 2490  Solved: 898[Submit][S ...

  3. BZOJ1266 [AHOI2006]上学路线route Floyd 最小割 SAP

    欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - BZOJ1266 题意概括 一个无向图,第一问:从1~n的最短路. 第二问,删除价值总和最小的边,使得1~n的 ...

  4. bzoj1266: [AHOI2006]上学路线route

    最短路+最小割 首先如何使最短路变长?就是要每一条最短路都割一条边. 我们求出每个点到点1和点n的距离,就可以知道哪些边在最短路上(一开始没有想到求到0和n的距离,想用floyd,但是n=500,怕超 ...

  5. 【BZOJ1266】[AHOI2006]上学路线route Floyd+最小割

    [BZOJ1266][AHOI2006]上学路线route Description 可可和卡卡家住合肥市的东郊,每天上学他们都要转车多次才能到达市区西端的学校.直到有一天他们两人参加了学校的信息学奥林 ...

  6. BZOJ 1266: [AHOI2006]上学路线route(最短路+最小割)

    第一问最短路.第二问,先把最短路的图建出来(边(u,v)满足d[s->u]+d[v->t]+d(u,v)==最短路径长度,就在图中,可以从源点和汇点分别跑一次最短路得到每个点到源点和汇点的 ...

  7. bzoj 1266 [AHOI2006] 上学路线 route 题解

    转载请注明:http://blog.csdn.net/jiangshibiao/article/details/23989499 [原题] 1266: [AHOI2006]上学路线route Time ...

  8. bzoj 1266 1266: [AHOI2006]上学路线route

    1266: [AHOI2006]上学路线route Time Limit: 3 Sec  Memory Limit: 162 MBSubmit: 2356  Solved: 841[Submit][S ...

  9. BZOJ1266 AHOI2006上学路线(最短路+最小割)

    求出最短路后找出可能在最短路上的边,显然割完边后我们需要让图中这样的边无法构成1到n的路径,最小割即可,非常板子. #include<iostream> #include<cstdi ...

随机推荐

  1. [spoj DISUBSTR]后缀数组统计不同子串个数

    题目链接:https://vjudge.net/contest/70655#problem/C 后缀数组的又一神奇应用.不同子串的个数,实际上就是所有后缀的不同前缀的个数. 考虑所有的后缀按照rank ...

  2. codeforces902C. Hashing Trees

    https://codeforces.com/contest/902/problem/C 题意: 给你树的深度和树的每个节点的深度,问你是否有重构,如果有重构输出两个不同的结构 题解: 如果相邻节点的 ...

  3. swagger学习2

    转:http://blog.csdn.net/fansunion/article/details/51923720 写的非常好,非常详细,推荐!!!! 最常用的5个注解 @Api:修饰整个类,描述Co ...

  4. JAX-WS 注解

    一.概述 “基于 XML 的 Web Service 的 Java API”(JAX-WS)通过使用注释来指定与 Web Service 实现相关联的元数据以及简化 Web Service 的开发.注 ...

  5. centos配置数据源和java环境配置

    ---恢复内容开始--- 一:前言 今天送走了一位同事,看着别人走勾起了我蠢蠢欲动的心啊,但是我知道,我不能那么的任性,我是men,这几天难得的清闲,所以我就弄一弄linux,昨天把网给配通了,今天配 ...

  6. struts学习笔记(四)

    一. 文件的上传: 1). 表单需要注意的 3 点 2). Struts2 的文件上传实际上使用的是 Commons FileUpload 组件, 所以需要导入 commons-fileupload- ...

  7. 图论---图的m-点着色判定问题(回溯法--迭代式)

    转自 图的m着色问题 图的m-着色判定问题——给定无向连通图G和m种不同的颜色.用这些颜色为图G的各顶点着色,每个顶点着一种颜色,是否有一种着色法使G中任意相邻的2个顶点着不同颜色? 图的m-着色优化 ...

  8. All in One到”分布式“迁移过程中的坑

    为什么“分布式”要加引号? 与其他公司提高并发性能的场景可能不太一样,我们的系统之前是多个模块共用一个tomcat来运行的(All in One),模块有很多,光安装包就几十个.当某个模块或某几个模块 ...

  9. Spring securiuty 过滤器

    1. HttpSessionContextIntegrationFilter 位于过滤器顶端,第一个起作用的过滤器. 用途一,在执行其他过滤器之前,率先判断用户的session中是否已经存在一个Sec ...

  10. 【LibreOJ】【LOJ】#6217. 扑克牌

    [题意]给定一叠n张扑克牌和各自的ai,bi.每次可以从最上面拿走连续atop张并获得btop的价值,或是把top放到最底,求最大价值. [算法]背包DP [题解]本题最大的特点:atop的需求与牌的 ...