D. Relatively Prime Graph
Let's call an undirected graph G=(V,E)G=(V,E) relatively prime if and only if for each edge (v,u)∈E(v,u)∈E GCD(v,u)=1GCD(v,u)=1 (the greatest common divisor of vv and uu is 11). If there is no edge between some pair of vertices vv and uu then the value of GCD(v,u)GCD(v,u) doesn't matter. The vertices are numbered from 11 to |V||V|.
Construct a relatively prime graph with nn vertices and mm edges such that it is connected and it contains neither self-loops nor multiple edges.
If there exists no valid graph with the given number of vertices and edges then output "Impossible".
If there are multiple answers then print any of them.
The only line contains two integers nn and mm (1≤n,m≤1051≤n,m≤105) — the number of vertices and the number of edges.
If there exists no valid graph with the given number of vertices and edges then output "Impossible".
Otherwise print the answer in the following format:
The first line should contain the word "Possible".
The ii-th of the next mm lines should contain the ii-th edge (vi,ui)(vi,ui) of the resulting graph (1≤vi,ui≤n,vi≠ui1≤vi,ui≤n,vi≠ui). For each pair (v,u)(v,u)there can be no more pairs (v,u)(v,u) or (u,v)(u,v). The vertices are numbered from 11 to nn.
If there are multiple answers then print any of them.
5 6
Possible
2 5
3 2
5 1
3 4
4 1
5 4
6 12
Impossible
Here is the representation of the graph from the first example:
这题无脑暴力 暴力真的出了奇迹
暴力枚举一遍就行了
#include <bits/stdc++.h>
using namespace std;
const int maxn = 1e5 + ;
const int INF = 0x3fffffff;
typedef long long LL;
using namespace std;
int n, m;
struct node {
int x, y;
node () {}
node (int x, int y): x(x), y(y) {}
} qu[maxn];
int main() {
scanf("%d%d", &n, &m);
if (n - > m) {
printf("Impossible\n");
return ;
}
int k = , flag = ;
for (int i = ; i <= n ; i++) {
for (int j = i + ; j <= n ; j++) {
if (__gcd(i, j) == ) qu[k++] = node(i, j);
if (k == m) {
flag = ;
break;
}
}
if (flag) break;
}
if (flag) {
printf("Possible\n");
for (int i = ; i < k ; i++)
printf("%d %d\n", qu[i].x, qu[i].y);
} else printf("Impossible\n");
return ;
}
D. Relatively Prime Graph的更多相关文章
- Codeforces 1009D:Relatively Prime Graph
D. Relatively Prime Graph time limit per test 2 seconds memory limit per test 256 megabytes input st ...
- Relatively Prime Graph CF1009D 暴力 思维
Relatively Prime Graph time limit per test 2 seconds memory limit per test 256 megabytes input stand ...
- Codeforces Global Round 4 Prime Graph CodeForces - 1178D (构造,结论)
Every person likes prime numbers. Alice is a person, thus she also shares the love for them. Bob wan ...
- [Codeforces 1178D]Prime Graph (思维+数学)
Codeforces 1178D (思维+数学) 题面 给出正整数n(不一定是质数),构造一个边数为质数的无向连通图(无自环重边),且图的每个节点的度数为质数 分析 我们先构造一个环,每个点的度数都是 ...
- CodeForces - 1009D Relatively Prime Graph
题面在这里! 直接暴力找点对就行了,可以证明gcd=1是比较密集的,所以复杂度略大于 O(N log N) #include<bits/stdc++.h> #define ll long ...
- Educational Codeforces Round 47 (Rated for Div. 2) :D. Relatively Prime Graph
题目链接:http://codeforces.com/contest/1009/problem/D 解题心得: 题意就是给你n个点编号1-n,要你建立m条无向边在两个互质的点之间,最后所有点形成一个连 ...
- 【Codeforces 1009D】Relatively Prime Graph
[链接] 我是链接,点我呀:) [题意] 题意 [题解] 1000以内就有非常多组互质的数了(超过1e5) 所以,直接暴力就行...很快就找完了 (另外一开始头n-1条边找1和2,3...n就好 [代 ...
- CF1178D Prime Graph
题目链接 题意 构造一张有\(n(3\le n\le 1000)\)个点的无向图(无重边和自环).满足: 边的总数为素数 所有点的度数均为素数 输出方案 solution 如果所有点的度数确定了.那么 ...
- Codeforces 1178D. Prime Graph
传送门 首先每个点至少要有两条边连接 那么容易想到先保证这一点然后再慢慢加边 那么先构成一个环即可:$(1,2),(2,3),(3,4)...(n,1)$ 然后考虑加边,发现一个点加一条边还是合法的, ...
随机推荐
- C语言学习记录_2019.02.02
变量在第一次被使用之前应该赋初值 scanf(“%d”,&price); scanf(“price%d %d”,&price); scanf中的东西一定是要输入的东西. 定义常量:c ...
- python2.7练习小例子(二十五)
25):题目:有5个人坐在一起,问第五个人多少岁?他说比第4个人大2岁.问第4个人岁数,他说比第3个人大2岁.问第三个人,又说比第2人大两岁.问第2个人,说比第一个人大两岁.最后问第一个人,他 ...
- linux io 学习笔记(02)---条件变量,管道,信号
条件变量的工作原理:对当前不访问共享资源的任务,直接执行睡眠处理,如果此时需要某个任务访问资源,直接将该任务唤醒.条件变量类似异步通信,操作的核心:睡眠.唤醒. 1.pthread_cond_t 定 ...
- Linux的系统安全设置Shell脚本
#!/bin/sh # desc: setup linux system security # powered by www.lvtao.net #account setup passwd -l xf ...
- 【面试题】2018年最全Java面试通关秘籍第五套!
[面试题]2018年最全Java面试通关秘籍第五套! 原创 2018-04-26 徐刘根 Java后端技术 第一套:<2018年最全Java面试通关秘籍第一套!> 第二套:<2018 ...
- 虚拟现实-VR-UE4-编辑自定义Character-上下左右移动-旋转
在上一片文章中,我创建了一个自定义的Character,但是只是有一行log显示,我使用了自己的Character,不能有任何操作,这里,我将记录我修改我的Character的过程 万事第一步,打开工 ...
- Cassandra 在CQL中使用函数
CQL 3.1 最后更新 2015年10月10日 maxTimeuuid() now() dateOf() minTimeuuid() --假设表结构如下 create table user ( us ...
- debian8.2安装kubernetes
master上通过kubeadm安装Kubernetes 添加国内阿里源后安装kubeadm: deb https://mirrors.aliyun.com/kubernetes/apt/ kuber ...
- GBDT && XGBOOST
GBDT && XGBOOST Outline Introduction GBDT Model XGBOOST Model ...
- BZOJ 1923 SDOI2010 外星千足虫 异或方程组+bitset
题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=1923 懒得贴题目了......这就是解一个异或方程组的裸题...... YY了一下异或方程 ...