My birthday is coming up and traditionally I’m serving pie. Not just one pie, no, I have a number N of them, of various tastes and of various sizes. F of my friends are coming to my party and each of them gets a piece of pie. This should be one piece of one pie, not several small pieces since that looks messy. This piece can be one whole pie though. My friends are very annoying and if one of them gets a bigger piece than the others, they start complaining. Therefore all of them should get equally sized (but not necessarily equally shaped) pieces, even if this leads to some pie getting spoiled (which is better than spoiling the party). Of course, I want a piece of pie for myself too, and that piece should also be of the same size. What is the largest possible piece size all of us can get? All the pies are cylindrical in shape and they all have the same height 1, but the radii of the pies can be different.

Input

One line with a positive integer: the number of test cases. Then for each test case: • One line with two integers N and F with 1 ≤ N, F ≤ 10000: the number of pies and the number of friends. • One line with N integers ri with 1 ≤ ri ≤ 10000: the radii of the pies.

Output

For each test case, output one line with the largest possible volume V such that me and my friends can all get a pie piece of size V . The answer should be given as a oating point number with an absolute error of at most 10−3 .

Sample Input

3

3 3

4 3 3

1 24

5

10 5

1 4 2 3 4 5 6 5 4 2

Sample Output

25.1327

3.1416

50.2655

题目意思:有N个馅饼,要分给F+1个人。要求每个人分到的面积相同,求最大的面积是多少!(分的要求,每个人手上只能有一个馅饼.....馅饼可以分割)

解题思路:

1.题目的最终目的不外乎就是确定 一个最大的面积值。这个面积值得范围是0至所有馅饼面积之和sum...然后再想想,它要分给F+1个人,那么它的范围又缩小到了

0至sum/(F+1)。

     2.然后就想办法二分缩小范围,直到确定最大面积值。通过来判断分的实际个数t与F+1比较来二分。如果t>=F+1,说明要求的值在右边,否则在左边。(注意要有等于,不然输出相差太大)

     3.输出

程序代码:

#include <iostream>
#include <cmath>
#include <cstdio>
#include <algorithm>
using namespace std;
const double pi = 4.0 * atan(1.0);
int n, f, r[];
double Left, Right;
void solve();
void input()
{
int T;
cin >> T;
while (T--)
{
cin >> n >> f;
f++;
for (int i = ; i <= n; i++)
cin >> r[i];
solve();
}
}
void solve()
{
Left = Right = ;
for (int i = ; i <= n; i++)
{
r[i] *= r[i];
if (r[i] > Right)
Right = r[i];
}
while (Right - Left > 1e-)
{
int tmp = ;
double mid = (Left + Right) / ;
for (int i = ; i <= n; i++)
tmp += r[i] / mid;
if (tmp >= f)
Left = mid;
else
Right = mid;
}
printf("%.4lf\n", Left * pi);
}
int main()
{
input();
return ;
}

HDU 1969(二分法)的更多相关文章

  1. hdu 1969 Pie (二分法)

    Pie Time Limit: 5000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total Submiss ...

  2. HDU 1969 Pie(二分法)

    My birthday is coming up and traditionally I’m serving pie. Not just one pie, no, I have a number N ...

  3. hdu 1969 Pie(二分查找)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1969 Pie Time Limit: 5000/1000 MS (Java/Others)    Me ...

  4. hdu 6288(二分法加精度处理问题)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=6288 题意:给出a,b,k,n可满足(n^a)*(⌈log2n⌉)^b<=k ,求最大的n值三个 ...

  5. HDU 1969 Pie(二分查找)

    Problem Description My birthday is coming up and traditionally I'm serving pie. Not just one pie, no ...

  6. hdu 1969(二分)

    题意:给了你n个蛋糕,然后分给m+1个人,问每个人所能得到的最大体积的蛋糕,每个人的蛋糕必须是属于同一块蛋糕的! 分析:浮点型二分,二分最后的结果即可,这里要注意圆周率的精度问题! #include& ...

  7. Pie(hdu 1969 二分查找)

    Pie Time Limit: 5000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total Submiss ...

  8. HDU 1969 Pie(二分搜索)

    题目链接 Problem Description My birthday is coming up and traditionally I'm serving pie. Not just one pi ...

  9. HDU 1969 Pie

    二分答案+验证(这题精度卡的比较死) #include<stdio.h> #include<math.h> #define eps 1e-7 ; double a[ff]; d ...

随机推荐

  1. C++ 之STL priority_queue

    priority_queue 对于基本类型的使用方法相对简单.他的模板声明带有三个参数,priority_queue<Type, Container, Functional>Type 为数 ...

  2. BZOJ 4305: 数列的GCD( 数论 )

    对于d, 记{ai}中是d的倍数的数的个数为c, 那么有: 直接计算即可,复杂度O(NlogN+MlogM) --------------------------------------------- ...

  3. select标签操作大全

    http://blog.csdn.net/hhhh2012/article/details/8610336

  4. Git使用方法记录(一)

    记录下git的基本使用方法,这里是以ubuntu14.04为例. 1,使用前的初始设置 git config –global user.name “FirstName LastName” git co ...

  5. isinstance 和 issubclass

    一.isinstance Python 中的isinstance函数 isinstance是Python中的一个内建函数 语法: isinstance(object, classinfo) 如果参数o ...

  6. windows文件快速搜索软件推荐

    everything文件搜索工具,可以快速搜索windows下的文件

  7. (Problem 70)Totient permutation

    Euler's Totient function, φ(n) [sometimes called the phi function], is used to determine the number ...

  8. DAO以及获取自动生成主键值

    package com.alibaba.sql; import java.lang.reflect.InvocationTargetException; import java.sql.Connect ...

  9. C winpcap 网络抓包 并获取IP TCP 协议的相关信息

    以太网协议分析函数: void ethernet_protocol_packet_handle (u_char *argument, const struct pcap_pkthdr *packet_ ...

  10. tcpdump抓包并保存成cap文件

    首选介绍一下tcpdump的常用参数 tcpdump采用命令行方式,它的命令格式为: tcpdump [ -adeflnNOpqStvx ] [ -c 数量 ] [ -F 文件名 ] [ -i 网络接 ...