问题

让我们带着问题去学习,效率会更高

1  es集群只配置一个节点,client是否能够自动发现集群中的所有节点?是如何发现的?

2  es client如何做到负载均衡?

3  一个es node挂掉之后,es client如何摘掉该节点?

4  es client node检测分为两种模式(SimpleNodeSampler和SniffNodesSampler),有什么不同?

核心类

  • TransportClient    es client对外API类
  • TransportClientNodesService  维护node节点的类
  • ScheduledNodeSampler   定期维护正常节点类
  • NettyTransport   进行数据传输
  • NodeSampler     节点嗅探器

Client初始化过程

初始化代码

1  Settings.Builder builder = Settings.settingsBuilder()
.put("cluster.name", clusterName)
.put("client.transport.sniff", true);
Settings settings = builder.build();
2 TransportClient client = TransportClient.builder().settings(settings).build();
3 for (TransportAddress transportAddress : transportAddresses) {
client.addTransportAddress(transportAddress);
}

1  ES 通过builder模式构造了基础的配置参数;

2  通过build构造了client,这个时候包括构造client、初始化ThreadPool、构造TransportClientNodesService、启动定时任务、定制化嗅探类型;

3  添加集群可用地址,比如我只配了集群中的一个节点;

构建client

调用build API

其中,关于依赖注入的简单说明:Guice 是 Google 用于 Java™ 开发的开放源码依赖项注入框架(感兴趣的可以了解下,这里不做重点讲解),具体可参考下边链接:

  1. https://github.com/google/guice/wiki/GettingStarted
  2. http://www.cnblogs.com/whitewolf/p/4185908.html
  3. http://www.ibm.com/developerworks/cn/java/j-guice.html

初始化TransportClientNodesService

在上一幅图的 modules.createInjector对TransportClientNodesService进行实例化,在TransportClient进行注入,可以看到TransportClient里边的绝大部分API都是通过TransportClientNodesService进行代理的

Guice通过注解进行注入

在上图中:注入了集群名称、线程池等,重点是如下代码:该段代码选择了节点嗅探器的类型  嗅探同一集群中的所有节点(SniffNodesSampler)或者是只关注配置文件配置的节点(SimpleNodeSampler)

if (this.settings.getAsBoolean("client.transport.sniff", false)) {
this.nodesSampler = new SniffNodesSampler();
} else {
this.nodesSampler = new SimpleNodeSampler();
}

特点:

SniffNodesSampler:client会主动发现集群里的其他节点,会创建fully connect(什么叫fully connect?后边说)
SimpleNodeSampler:ping listedNodes中的所有node,区别在于这里创建的都是light connect;

其中TransportClientNodesService维护了三个节点存储数据结构:

// nodes that are added to be discovered
1 private volatile List<DiscoveryNode> listedNodes = Collections.emptyList();
2 private volatile List<DiscoveryNode> nodes = Collections.emptyList();
3 private volatile List<DiscoveryNode> filteredNodes = Collections.emptyList();

1    代表配置文件中主动加入的节点;

2    代表参与请求的节点;

3    过滤掉的不能进行请求处理的节点;

Client如何做到负载均衡

如上图,我们发现每次 execute 的时候,是从 nodes 这个数据结构中获取节点,然后通过简单的 rouund-robbin 获取节点服务器;核心代码如下:

private final AtomicInteger randomNodeGenerator = new AtomicInteger();
......
private int getNodeNumber() {
int index = randomNodeGenerator.incrementAndGet();
if (index < 0) {
index = 0;
randomNodeGenerator.set(0);
}
return index;
}

然后通过netty的channel将数据写入,核心代码如下:

public void sendRequest(final DiscoveryNode node, final long requestId, final String action, final TransportRequest request, TransportRequestOptions options) throws IOException, TransportException {

1    Channel targetChannel = nodeChannel(node, options); 

    if (compress) {
options = TransportRequestOptions.builder(options).withCompress(true).build();
} byte status = 0;
status = TransportStatus.setRequest(status); ReleasableBytesStreamOutput bStream = new ReleasableBytesStreamOutput(bigArrays);
boolean addedReleaseListener = false;
try {
bStream.skip(NettyHeader.HEADER_SIZE);
StreamOutput stream = bStream;
// only compress if asked, and, the request is not bytes, since then only
// the header part is compressed, and the "body" can't be extracted as compressed
if (options.compress() && (!(request instanceof BytesTransportRequest))) {
status = TransportStatus.setCompress(status);
stream = CompressorFactory.defaultCompressor().streamOutput(stream);
} // we pick the smallest of the 2, to support both backward and forward compatibility
// note, this is the only place we need to do this, since from here on, we use the serialized version
// as the version to use also when the node receiving this request will send the response with
Version version = Version.smallest(this.version, node.version()); stream.setVersion(version);
stream.writeString(action); ReleasablePagedBytesReference bytes;
ChannelBuffer buffer;
// it might be nice to somehow generalize this optimization, maybe a smart "paged" bytes output
// that create paged channel buffers, but its tricky to know when to do it (where this option is
// more explicit).
if (request instanceof BytesTransportRequest) {
BytesTransportRequest bRequest = (BytesTransportRequest) request;
assert node.version().equals(bRequest.version());
bRequest.writeThin(stream);
stream.close();
bytes = bStream.bytes();
ChannelBuffer headerBuffer = bytes.toChannelBuffer();
ChannelBuffer contentBuffer = bRequest.bytes().toChannelBuffer();
buffer = ChannelBuffers.wrappedBuffer(NettyUtils.DEFAULT_GATHERING, headerBuffer, contentBuffer);
} else {
request.writeTo(stream);
stream.close();
bytes = bStream.bytes();
buffer = bytes.toChannelBuffer();
}
NettyHeader.writeHeader(buffer, requestId, status, version);
2 ChannelFuture future = targetChannel.write(buffer);
ReleaseChannelFutureListener listener = new ReleaseChannelFutureListener(bytes);
future.addListener(listener);
addedReleaseListener = true;
transportServiceAdapter.onRequestSent(node, requestId, action, request, options);
} finally {
if (!addedReleaseListener) {
Releasables.close(bStream.bytes());
}
}
}

其中最重要的就是1和2,中间一段是处理数据和进行一些必要的步骤

1代表拿到一个连接;

2代表通过拿到的连接写数据;

这时候就会有新的问题

1   nodes的数据是何时写入的?

2   连接是什么时候创建的?

Nodes数据何时写入

核心是调用doSampler,代码如下:

protected void doSample() {
// the nodes we are going to ping include the core listed nodes that were added
// and the last round of discovered nodes
Set<DiscoveryNode> nodesToPing = Sets.newHashSet();
for (DiscoveryNode node : listedNodes) {
nodesToPing.add(node);
}
for (DiscoveryNode node : nodes) {
nodesToPing.add(node);
} final CountDownLatch latch = new CountDownLatch(nodesToPing.size());
final ConcurrentMap<DiscoveryNode, ClusterStateResponse> clusterStateResponses = ConcurrentCollections.newConcurrentMap();
for (final DiscoveryNode listedNode : nodesToPing) {
threadPool.executor(ThreadPool.Names.MANAGEMENT).execute(new Runnable() {
@Override
public void run() {
try {
if (!transportService.nodeConnected(listedNode)) {
try { // if its one of the actual nodes we will talk to, not to listed nodes, fully connect
if (nodes.contains(listedNode)) {
logger.trace("connecting to cluster node [{}]", listedNode);
transportService.connectToNode(listedNode);
} else {
// its a listed node, light connect to it...
logger.trace("connecting to listed node (light) [{}]", listedNode);
transportService.connectToNodeLight(listedNode);
}
} catch (Exception e) {
logger.debug("failed to connect to node [{}], ignoring...", e, listedNode);
latch.countDown();
return;
}
}
//核心是在这里,刚刚开始初始化的时候,可能只有配置的一个节点,这个时候会通过这个地址发送一个state状态监测
//"cluster:monitor/state"
transportService.sendRequest(listedNode, ClusterStateAction.NAME,
headers.applyTo(Requests.clusterStateRequest().clear().nodes(true).local(true)),
TransportRequestOptions.builder().withType(TransportRequestOptions.Type.STATE).withTimeout(pingTimeout).build(),
new BaseTransportResponseHandler<ClusterStateResponse>() { @Override
public ClusterStateResponse newInstance() {
return new ClusterStateResponse();
} @Override
public String executor() {
return ThreadPool.Names.SAME;
} @Override
public void handleResponse(ClusterStateResponse response) {
/*通过回调,会在这个地方返回集群中类似下边所有节点的信息
{
"version" : 27,
"state_uuid" : "YSI9d_HiQJ-FFAtGFCVOlw",
"master_node" : "TXHHx-XRQaiXAxtP1EzXMw",
"blocks" : { },
"nodes" : {
"7" : {
"name" : "es03",
"transport_address" : "1.1.1.1:9300",
"attributes" : {
"data" : "false",
"master" : "true"
}
},
"6" : {
"name" : "common02",
"transport_address" : "1.1.1.2:9300",
"attributes" : {
"master" : "false"
}
},
"5" : {
"name" : "es02",
"transport_address" : "1.1.1.3:9300",
"attributes" : {
"data" : "false",
"master" : "true"
}
},
"4" : {
"name" : "common01",
"transport_address" : "1.1.1.4:9300",
"attributes" : {
"master" : "false"
}
},
"3" : {
"name" : "common03",
"transport_address" : "1.1.1.5:9300",
"attributes" : {
"master" : "false"
}
},
"2" : {
"name" : "es01",
"transport_address" : "1.1.1.6:9300",
"attributes" : {
"data" : "false",
"master" : "true"
}
},
"1" : {
"name" : "common04",
"transport_address" : "1.1.1.7:9300",
"attributes" : {
"master" : "false"
}
}
},
"metadata" : {
"cluster_uuid" : "_na1x_",
"templates" : { },
"indices" : { }
},
"routing_table" : {
"indices" : { }
},
"routing_nodes" : {
"unassigned" : [ ],
}
}
*/
clusterStateResponses.put(listedNode, response);
latch.countDown();
} @Override
public void handleException(TransportException e) {
logger.info("failed to get local cluster state for {}, disconnecting...", e, listedNode);
transportService.disconnectFromNode(listedNode);
latch.countDown();
}
});
} catch (Throwable e) {
logger.info("failed to get local cluster state info for {}, disconnecting...", e, listedNode);
transportService.disconnectFromNode(listedNode);
latch.countDown();
}
}
});
} try {
latch.await();
} catch (InterruptedException e) {
return;
} HashSet<DiscoveryNode> newNodes = new HashSet<>();
HashSet<DiscoveryNode> newFilteredNodes = new HashSet<>();
for (Map.Entry<DiscoveryNode, ClusterStateResponse> entry : clusterStateResponses.entrySet()) {
if (!ignoreClusterName && !clusterName.equals(entry.getValue().getClusterName())) {
logger.warn("node {} not part of the cluster {}, ignoring...", entry.getValue().getState().nodes().localNode(), clusterName);
newFilteredNodes.add(entry.getKey());
continue;
}
//接下来在这个地方拿到所有的data nodes 写入到nodes节点里边
for (ObjectCursor<DiscoveryNode> cursor : entry.getValue().getState().nodes().dataNodes().values()) {
newNodes.add(cursor.value);
}
} nodes = validateNewNodes(newNodes);
filteredNodes = Collections.unmodifiableList(new ArrayList<>(newFilteredNodes));
}

其中调用时机分为两部分:

1  client.addTransportAddress(transportAddress);

2 ScheduledNodeSampler,默认每隔5s会进行一次对各个节点的请求操作;

连接是何时创建的呢

也是在doSampler调用,最终由NettryTransport创建

这个时候发现,如果是light则创建轻连接,也就是,否则创建fully connect,其中包括

  • recovery:做数据恢复recovery,默认个数2个;
  • bulk:用于bulk请求,默认个数3个;
  • med/reg:典型的搜索和单doc索引,默认个数6个;
  • high:如集群state的发送等,默认个数1个;
  • ping:就是node之间的ping咯。默认个数1个;

对应的代码为:

public void start() {
List<Channel> newAllChannels = new ArrayList<>();
newAllChannels.addAll(Arrays.asList(recovery));
newAllChannels.addAll(Arrays.asList(bulk));
newAllChannels.addAll(Arrays.asList(reg));
newAllChannels.addAll(Arrays.asList(state));
newAllChannels.addAll(Arrays.asList(ping));
this.allChannels = Collections.unmodifiableList(newAllChannels);
}

Elasticsearch之client源码简要分析的更多相关文章

  1. Activity源码简要分析总结

    Activity源码简要分析总结 摘自参考书籍,只列一下结论: 1. Activity的顶层View是DecorView,而我们在onCreate()方法中通过setContentView()设置的V ...

  2. [Java] LinkedHashMap 源码简要分析

    特点 * 各个元素不仅仅按照HashMap的结构存储,而且每个元素包含了before/after指针,通过一个头元素header,形成一个双向循环链表.使用循环链表,保存了元素插入的顺序. * 可设置 ...

  3. [Java] HashMap 源码简要分析

    特性 * 允许null作为key/value. * 不保证按照插入的顺序输出.使用hash构造的映射一般来讲是无序的. * 非线程安全. * 内部原理与Hashtable类似.   源码简要分析 pu ...

  4. [Java] Hashtable 源码简要分析

    Hashtable /HashMap / LinkedHashMap 概述 * Hashtable比较早,是线程安全的哈希映射表.内部采用Entry[]数组,每个Entry均可作为链表的头,用来解决冲 ...

  5. RxJava && Agera 从源码简要分析基本调用流程(2)

    版权声明:本文由晋中望原创文章,转载请注明出处: 文章原文链接:https://www.qcloud.com/community/article/124 来源:腾云阁 https://www.qclo ...

  6. RxJava && Agera 从源码简要分析基本调用流程(1)

    版权声明:本文由晋中望原创文章,转载请注明出处: 文章原文链接:https://www.qcloud.com/community/article/123 来源:腾云阁 https://www.qclo ...

  7. Redis源码简要分析

    转载请注明来源:https://www.cnblogs.com/hookjc/ 把所有服务端文件列出来,并且标示出其作用:adlist.c //双向链表ae.c //事件驱动ae_epoll.c // ...

  8. spring mvc 源码简要分析

    关于web项目,运用比较多的是过滤器和拦截器 过滤器基于责任链设计模式 创建过滤器链 / Create the filter chain for this requestApplicationFilt ...

  9. ElasticSearch Index操作源码分析

    ElasticSearch Index操作源码分析 本文记录ElasticSearch创建索引执行源码流程.从执行流程角度看一下创建索引会涉及到哪些服务(比如AllocationService.Mas ...

随机推荐

  1. Android Studio 在mac下对应的快捷键

    Mac下快捷键的符号所对应的按键⌥-> option|alt⇧->shift⌃->control⌘->command⎋->esc注: 与F6/F7/F12等F功能键开头的 ...

  2. CustomEvent自定义事件

    javascript与HTML之间的交互是通过事件来实现的.事件,就是文档或浏览器窗口发生的一些特定的交互瞬间.通常大家都会认为事件是在用户与浏览器进行交互的时候触发的,其实通过javascript我 ...

  3. BACKLOG

    团队: 郭志豪:http://www.cnblogs.com/gzh13692021053/ 杨子健:http://www.cnblogs.com/yzj666/ 刘森松:http://www.cnb ...

  4. 【BZOJ1076】[SCOI2008]奖励关 状压DP+期望

    [BZOJ1076][SCOI2008]奖励关 Description 你正在玩你最喜欢的电子游戏,并且刚刚进入一个奖励关.在这个奖励关里,系统将依次随机抛出k次宝物,每次你都可以选择吃或者不吃(必须 ...

  5. 无题的题 & 模拟退火...

    题意: 给你不超过8条一端在圆心的半径,求他们组成的凸包的最大面积. SOL: 正解怎么搞啊不会啊...然后昨天毛爷爷刚讲过模拟退火...那么就打一个吧... 然后就T了,不过三角形的部分分妥妥的.. ...

  6. BZOJ1055: [HAOI2008]玩具取名

    ... #include<bits/stdc++.h> using namespace std; int q[255]; char s[205]; char p[]={'W','I','N ...

  7. bootstrap css总结

    base css 我分为了几大类 1,列表 .unstyled(无样式列表),.dl-horizontal(dl列表水平排列) 2,代码 code(行级),pre(块级),.pre-scrollabl ...

  8. uedit修改文件上传路劲,支持api文件接口

    首先修改一个东西ueditor/ueditor.config.js serverUrl: URL + "php/controller.php" 原来 serverUrl: &quo ...

  9. PHP处理一个5G文件,使用内存512M的,数据为整形,从大到小排序,优化排序算法

    $file='./new.txt'; $fp = fopen($file, "r"); $chunk = 4096;//一次处理1M的字节 1M=1024*1024 $fs = f ...

  10. ZooKeeper 配置

    # The number of milliseconds of each ticktickTime=2000 # The number of ticks that the initial# synch ...