String字符串是系统里最常用的类型之一,在系统中占据了很大的内存,因此,高效地使用字符串,对系统的性能有较好的提升。

针对字符串的优化,我在工作与学习过程总结了以下三种方案作分享:

一.优化构建的超大字符串

  验证环境:jdk1.8
  反编译工具:jad
1.下载反编译工具jad,百度云盘下载:
链接:https://pan.baidu.com/s/1TK1_N769NqtDtLn28jR-Xg
提取码:ilil
2.验证
先执行一段例子1代码:

 public class test3 {
public static void main(String[] args) {
String str="ab"+"cd"+"ef"+"123";
}
}

执行完成后,用反编译工具jad进行反编译:jad -o -a -s d.java test.class

反编译后的代码:

 // Decompiled by Jad v1.5.8g. Copyright 2001 Pavel Kouznetsov.
// Jad home page: http://www.kpdus.com/jad.html
// Decompiler options: packimports(3) annotate
// Source File Name: test.java
package example;
public class test
{
public test()
{
// 0 0:aload_0
// 1 1:invokespecial #1 <Method void Object()>
// 2 4:return
}
public static void main(String args[])
{
String str = "abcdef123";
// 0 0:ldc1 #2 <String "abcdef123">
// 1 2:astore_1
// 2 3:return
}
}
案例2:

 public class test1 {
public static void main(String[] args)
{
String s = "abc";
String ss = "ok" + s + "xyz" + 5;
System.out.println(ss);
}
}
用反编译工具jad执行jad -o -a -s d.java test1.class进行反编译后:
 // Decompiled by Jad v1.5.8g. Copyright 2001 Pavel Kouznetsov.
// Jad home page: http://www.kpdus.com/jad.html
// Decompiler options: packimports(3) annotate
// Source File Name: test1.java package example; import java.io.PrintStream; public class test1
{
public test1()
{
// 0 0:aload_0
// 1 1:invokespecial #1 <Method void Object()>
// 2 4:return
}
public static void main(String args[])
{
String s = "abc";
// 0 0:ldc1 #2 <String "abc">
// 1 2:astore_1
String ss = (new StringBuilder()).append("ok").append(s).append("xyz").append(5).toString();
// 2 3:new #3 <Class StringBuilder>
// 3 6:dup
// 4 7:invokespecial #4 <Method void StringBuilder()>
// 5 10:ldc1 #5 <String "ok">
// 6 12:invokevirtual #6 <Method StringBuilder StringBuilder.append(String)>
// 7 15:aload_1
// 8 16:invokevirtual #6 <Method StringBuilder StringBuilder.append(String)>
// 9 19:ldc1 #7 <String "xyz">
// 10 21:invokevirtual #6 <Method StringBuilder StringBuilder.append(String)>
// 11 24:iconst_5
// 12 25:invokevirtual #8 <Method StringBuilder StringBuilder.append(int)>
// 13 28:invokevirtual #9 <Method String StringBuilder.toString()>
// 14 31:astore_2
System.out.println(ss);
// 15 32:getstatic #10 <Field PrintStream System.out>
// 16 35:aload_2
// 17 36:invokevirtual #11 <Method void PrintStream.println(String)>
// 18 39:return
}
}
根据反编译结果,可以看到内部其实是通过StringBuilder进行字符串拼接的。
再来执行例3的代码:

 public class test2 {
public static void main(String[] args) {
String s = "";
Random rand = new Random();
for (int i = 0; i < 10; i++) {
s = s + rand.nextInt(1000) + " ";
}
System.out.println(s);
}
}

用反编译工具jad执行jad -o -a -s d.java test2.class进行反编译后,发现其内部同样是通过StringBuilder来进行拼接的:

 // Decompiled by Jad v1.5.8g. Copyright 2001 Pavel Kouznetsov.
// Jad home page: http://www.kpdus.com/jad.html
// Decompiler options: packimports(3) annotate
// Source File Name: test2.java
package example;
import java.io.PrintStream;
import java.util.Random;
public class test2
{
public test2()
{
// 0 0:aload_0
// 1 1:invokespecial #1 <Method void Object()>
// 2 4:return
}
public static void main(String args[])
{
String s = "";
// 0 0:ldc1 #2 <String "">
// 1 2:astore_1
Random rand = new Random();
// 2 3:new #3 <Class Random>
// 3 6:dup
// 4 7:invokespecial #4 <Method void Random()>
// 5 10:astore_2
for(int i = 0; i < 10; i++)
//* 6 11:iconst_0
//* 7 12:istore_3
//* 8 13:iload_3
//* 9 14:bipush 10
//* 10 16:icmpge 55
s = (new StringBuilder()).append(s).append(rand.nextInt(1000)).append(" ").toString();
// 11 19:new #5 <Class StringBuilder>
// 12 22:dup
// 13 23:invokespecial #6 <Method void StringBuilder()>
// 14 26:aload_1
// 15 27:invokevirtual #7 <Method StringBuilder StringBuilder.append(String)>
// 16 30:aload_2
// 17 31:sipush 1000
// 18 34:invokevirtual #8 <Method int Random.nextInt(int)>
// 19 37:invokevirtual #9 <Method StringBuilder StringBuilder.append(int)>
// 20 40:ldc1 #10 <String " ">
// 21 42:invokevirtual #7 <Method StringBuilder StringBuilder.append(String)>
// 22 45:invokevirtual #11 <Method String StringBuilder.toString()>
// 23 48:astore_1 // 24 49:iinc 3 1
//* 25 52:goto 13
System.out.println(s);
// 26 55:getstatic #12 <Field PrintStream System.out>
// 27 58:aload_1
// 28 59:invokevirtual #13 <Method void PrintStream.println(String)>
// 29 62:return
}
}
综上案例分析,发现字符串进行“+”拼接时,内部有以下几种情况:
1.“+”直接拼接的是常量变量,如"ab"+"cd"+"ef"+"123",内部编译就把几个连接成一个常量字符串处理;
2. “+”拼接的含变量字符串,如案例2:"ok" + s + "xyz" + 5,内部编译其实是new 一个StringBuilder来进行来通过append进行拼接;
3.案例3循环过程,实质也是“+”拼接含变量字符串,因此,内部编译时,也会创建StringBuilder来进行拼接。
对比三种情况,发现第三种情况每次做循环,都会新创建一个StringBuilder对象,这会增加系统的内存,反过来就会降低系统性能。
因此,在做字符串拼接时,单线程环境下,可以显性使用StringBuilder来进行拼接,避免每循环一次就new一个StringBuilder对象;在多线程环境下,可以使用线程安全的StringBuffer,但涉及到锁竞争,StringBuffer性能会比StringBuilder差一点。
这样,起到在字符串拼接时的优化效果。
2.如何使用String.intern节省内存?
在回答这个问题之前,可以先对一段代码进行测试:
1.首先在idea设置-XX:+PrintGCDetails -Xmx6G -Xmn3G,用来打印GC日志信息,设置如下图所示:
2.执行以下例子代码:

 public class test4 {
public static void main(String[] args) {
final int MAX=10000000;
System.out.println("不用intern:"+notIntern(MAX));
// System.out.println("使用intern:"+intern(MAX));
}
private static long notIntern(int MAX){
long start = System.currentTimeMillis();
for (int i = 0; i < MAX; i++) {
int j = i % 100;
String str = String.valueOf(j);
}
return System.currentTimeMillis() - start;
}
/*
private static long intern(int MAX){
long start = System.currentTimeMillis();
for (int i = 0; i < MAX; i++) {
int j = i % 100;
String str = String.valueOf(j).intern();
}
return System.currentTimeMillis() - start;
}*/

未使用intern的GC日志:

 不用intern:354
[GC (System.gc()) [PSYoungGen: 377487K->760K(2752512K)] 377487K->768K(2758656K), 0.0009102 secs] [Times: user=0.00 sys=0.00, real=0.00 secs]
[Full GC (System.gc()) [PSYoungGen: 760K->0K(2752512K)] [ParOldGen: 8K->636K(6144K)] 768K->636K(2758656K), [Metaspace: 3278K->3278K(1056768K)], 0.0051214 secs] [Times: user=0.00 sys=0.00, real=0.00 secs]
Heap
PSYoungGen total 2752512K, used 23593K [0x0000000700000000, 0x00000007c0000000, 0x00000007c0000000)
eden space 2359296K, 1% used [0x0000000700000000,0x000000070170a548,0x0000000790000000)
from space 393216K, 0% used [0x0000000790000000,0x0000000790000000,0x00000007a8000000)
to space 393216K, 0% used [0x00000007a8000000,0x00000007a8000000,0x00000007c0000000)
ParOldGen total 6144K, used 636K [0x0000000640000000, 0x0000000640600000, 0x0000000700000000)
object space 6144K, 10% used [0x0000000640000000,0x000000064009f2f8,0x0000000640600000)
Metaspace used 3284K, capacity 4500K, committed 4864K, reserved 1056768K
class space used 359K, capacity 388K, committed 512K, reserved 1048576K

根据打印的日志分析:没有使用intern情况下,执行时间为354ms,占用内存为24229k;

使用intern的GC日志:

 使用intern:1515
[GC (System.gc()) [PSYoungGen: 613417K->1144K(2752512K)] 613417K->1152K(2758656K), 0.0012530 secs] [Times: user=0.00 sys=0.00, real=0.00 secs]
[Full GC (System.gc()) [PSYoungGen: 1144K->0K(2752512K)] [ParOldGen: 8K->965K(6144K)] 1152K->965K(2758656K), [Metaspace: 3780K->3780K(1056768K)], 0.0079962 secs] [Times: user=0.02 sys=0.00, real=0.01 secs]
Heap
PSYoungGen total 2752512K, used 15729K [0x0000000700000000, 0x00000007c0000000, 0x00000007c0000000)
eden space 2359296K, 0% used [0x0000000700000000,0x0000000700f5c400,0x0000000790000000)
from space 393216K, 0% used [0x0000000790000000,0x0000000790000000,0x00000007a8000000)
to space 393216K, 0% used [0x00000007a8000000,0x00000007a8000000,0x00000007c0000000)
ParOldGen total 6144K, used 965K [0x0000000640000000, 0x0000000640600000, 0x0000000700000000)
object space 6144K, 15% used [0x0000000640000000,0x00000006400f1740,0x0000000640600000)
Metaspace used 3786K, capacity 4540K, committed 4864K, reserved 1056768K
class space used 420K, capacity 428K, committed 512K, reserved 1048576K
日志分析:没有使用intern情况下,执行时间为1515ms,占用内存为16694k;
综上所述:使用intern情况下,内存相对没有使用intern的情况要小,但在节省内存的同时,增加了时间复杂度。我试过将MAX=10000000再增加一个0的情况下,使用intern将会花费高达11秒的执行时间,可见,在遍历数据过大时,不建议使用intern。
因此,使用intern的前提,一定要考虑到具体的使用场景。
到这里,可以确定,使用String.intern确实可以节省内存。
接下来,分析一下intern在不同JDK版本的区别。
在JDK1.6中,字符串常量池在方法区中,方法区属于永久代。
在JDK1.7中,字符串常量池移到了堆中。
在JDK1.8中,字符串常量池移到了元空间里,与堆相独立。
分别在1.6、1.7、1.8版本执行以下一个例子:

 public class test5 {
public static void main(String[] args) { String s1=new String("ab");
s.intern();
String s2="ab";
System.out.println(s1==s2); String s3=new String("ab")+new String("cd");
s3.intern();
String s4="abcd";
System.out.println(s4==s3);
}
}
1.6版本
执行结果:
fasle false
分析:
执行第一部分时:
1.代码编译时,先在字符串常量池里创建常量“ab";在调用new时,将在堆中创建一个String对象,字符串常量创建的“ab"存储到堆中,最后堆中的String对象返回一个引用给s1。
2.s.intern(),在字符串常量池里已经存在“ab”,便不再创建存放副本“ab";
3.s2="ab",s2指向的是字符串常量池里”ab",而s1指向的堆中的”ab",故两者不相等。
该示意图如下:
执行第二部分:
1.两个new出来相加的“abcd”存放在堆中,s3指向堆中的“abcd";
2.执行s3.intern(),在将“abcd"副本的存放到字符串常量池时,发现常量池里没有该”abcd",因此,成功存放;
3.s4="abcd"指向的是字符串常量池里已有的“abcd"副本,而s3指向的是堆中的"abcd",副本"abcd"的地址和堆中“abcd"地址不相同,故为false;
1.7版本
false true
执行第一部分:这一部分与jdk1.6基本类似,不同在于,s1.intern()返回的是引用,而不是副本。
执行第二部分:
1.new String("ab")+new String("cd"),先在常量池里生成“ab"和”cd",再在堆中生成“abcd";
2.执行s3.intern()时,会把“abcd”的对象引用放到字符串常量池里,发现常量池里还没有该引用,故可成功放入。当String s4="abcd",即把字符串常量池中”abcd“的引用地址赋值给s4,相当于s4指向了堆中”abcd"的地址,故s3==s4为true。
1.8版本
false true
参考网上一些博客,在1.8版本当中,使用intern()时,执行原理如下:
若字符串常量池中,包含了与当前对象相当的字符串,将返回常量池里的字符串;若不存在,则将该字符串存放进常量池里,并返回字符串的引用。
 
综上所述,可见三种版本当中,使用intern时,若字符串常量池里不存在相应字符串时,存在以下区别:
例如:
String s1=new String("ab"); s.intern();
jdk1.6:若字符串常量池里没有“ab",则会在常量池里存放一个“ab"副本,该副本地址与堆中的”ab"地址不相等;
jdk1.7:若字符串常量池里没有“ab",会将“ab”的对象引用放到字符串常量池里,该引用地址与堆中”ab"的地址相同;
jdk1.8:若字符串常量池中包含与当前对象相当的字符串,将返回常量池里的字符串;若不存在,则将该字符串存放进常量池里,并返回字符串的引用。
3.如何使用字符串的分割方法?
在简单进行字符串分割时,可以用indexOf替代split,因为split的性能不够稳定,故针对简单的字符串分割,可优先使用indexOf代替;

String字符串性能优化的几种方案的更多相关文章

  1. String字符串性能优化的探究

    一.背景 String 对象是我们使用最频繁的一个对象类型,但它的性能问题却是最容易被忽略的.String 对象作为 Java 语言中重要的数据类型,是内存中占用空间最大的一个对象,高效地使用字符串, ...

  2. Web 性能优化:21 种优化 CSS 和加快网站速度的方法

    这是 Web 性能优化的第 4 篇,上一篇在下面看点击查看: Web 性能优化:使用 Webpack 分离数据的正确方法 Web 性能优化:图片优化让网站大小减少 62% Web 性能优化:缓存 Re ...

  3. Unity性能优化的N种武器

    贴图: l  控制贴图大小,尽量不要超过 1024 x1024: l  尽量使用2的n次幂大小的贴图,否则GfxDriver里会有2份贴图: l  尽量使用压缩格式减小贴图大小: l  若干种贴图合并 ...

  4. JAVA性能优化的五种方式

    一,JAVA性能优化之设计优化 设计优化处于性能优化手段的上层.它往往须要在软件开发之前进行.在软件开发之前,系统架构师应该就评估系统可能存在的各种潜在问题和技术难点,并给出合理的设计方案,因为软件设 ...

  5. C#程序优化的50种方案

    一.用属性代替可访问的字段 1..NET数据绑定只支持数据绑定,使用属性可以获得数据绑定的好处: 2.在属性的get和set访问器重可使用lock添加多线程的支持. 二.readonly(运行时常量) ...

  6. Spring/Hibernate 应用性能优化的7种方法

    对于大多数典型的 Spring/Hibernate 企业应用而言,其性能表现几乎完全依赖于持久层的性能.此篇文章中将介绍如何确认应用是否受数据库约束,同时介绍七种常用的提高应用性能的速成法.本文系 O ...

  7. Django性能优化的几种方法

    1.一次性取出你所需要的数据 单一动作,需要多次连接数据库里的时候,最好一次性取出所有需要的数据,减少连接数据库的次数.此类需求推荐使用QuerySet.select_related()和prefet ...

  8. Java 性能优化之 String 篇

    原文:http://www.ibm.com/developerworks/cn/java/j-lo-optmizestring/ Java 性能优化之 String 篇 String 方法用于文本分析 ...

  9. String性能优化

    String 使用的优化建议 其他 String 使用的优化建议 以上我们描述了在我们的大量文本分析案例中调用 String 的 subString方法导致内存消耗的问题,下面再列举一些其他将导致内存 ...

随机推荐

  1. h5 页面 实现单选题,多选题功能。

    效果图: 项目要求: 1:实现单选题和多选题区分 (这个根据后端传来的数据判断 ) 2 单选选中效果 和  多选选中效果(利用input 和label ) 3.答题成功与失败 分单选和多选的情况    ...

  2. nor flash之频率限制

    背景 支持一款nor flash时,出于性能考虑,一般会查看其nor支持的最高频率以及主控端spi控制器的最高频率,以选择一个合适的运行频率. 对于一款主控支持多款flash的情况,还得考虑好兼容性等 ...

  3. CodeForces 1182D

    图论的思维题,太秀了,网上答案也不多,我就也来bb吧 总之47个样例姑且是过了,不知道还有没有反例: 会求树的重心和中心了,挺好 #include<cstdio> #include< ...

  4. ASP.Net MVC SignalR的应用

    ASP.Net MVC SignalR的应用 最近做的一个MVC项目有个模块是要使用即时通信实现弹幕效果.既要考虑通信的实时性也要考虑服务器性能和资源消耗,所幸项目对浏览器的版本没有要求.所以我最先想 ...

  5. < python音频库:Windows下pydub安装配置、过程出现的问题及常用API >

    < python音频库:Windows下pydub安装配置.过程出现的问题及常用API > 背景 刚从B站上看过倒放挑战之后也想体验下,心血来潮一个晚上完成了基本的实现.其中倒放与播放部分 ...

  6. 开箱即用!使用Rancher 2.3 启用Istio初体验

    本文来自Rancher Labs Rancher的理念是Run Kubernetes Everywhere,Rancher 2.3中许多重大更新,让这一理念的实现又向前一步. 其中,最重要的两个特性是 ...

  7. MakeDown效果

    这是一级标题 这是二级标题 这是三级标题 这是四级标题 这是五级标题 这是六级标题 这是加粗的文字 这是倾斜的文字 这是斜体加粗的文字 这是加删除线的文字 这是引用的内容 这是引用的内容 这是引用的内 ...

  8. 2019年面试官最喜欢问的28道ZooKeeper面试题

    前言 ZooKeeper 是一个分布式的,开放源码的分布式应用程序协调服务.它是一个为分布式应用提供一致性服务的软件,提供的功能包括:配置维护.域名服务.分布式同步.组服务等. ZooKeeper 的 ...

  9. 字典树 (HDU 2072)

    lily的好朋友xiaoou333最近很空,他想了一件没有什么意义的事情,就是统计一篇文章里不同单词的总数.下面你的任务是帮助xiaoou333解决这个问题. Input有多组数据,每组一行,每组就是 ...

  10. .NET为什么要使用异步(async)编程?⭐⭐⭐⭐⭐

    .NET为什么要使用异步(async)编程? 有几点坐下笔记 ⭐⭐⭐⭐: 1. 同步方法 static void Main(string[] args) { Console.WriteLine($&q ...