NMI计算

NMI(Normalized Mutual Information)标准化互信息,常用在聚类中,度量两个聚类结果的相近程度。是社区发现(community detection)的重要衡量指标,基本可以比较客观地评价出一个社区划分与标准划分之间相比的准确度。NMI的值域是0到1,越高代表划分得越准。

# -*- coding:utf-8 -*-
'''
Created on 2017年10月28日 @summary: 利用Python实现NMI计算 @author: dreamhome
'''
import math
import numpy as np
from sklearn import metrics
def NMI(A,B):
#样本点数
total = len(A)
A_ids = set(A)
B_ids = set(B)
#互信息计算
MI = 0
eps = 1.4e-45
for idA in A_ids:
for idB in B_ids:
idAOccur = np.where(A==idA)
idBOccur = np.where(B==idB)
idABOccur = np.intersect1d(idAOccur,idBOccur)
px = 1.0*len(idAOccur[0])/total
py = 1.0*len(idBOccur[0])/total
pxy = 1.0*len(idABOccur)/total
MI = MI + pxy*math.log(pxy/(px*py)+eps,2)
# 标准化互信息
Hx = 0
for idA in A_ids:
idAOccurCount = 1.0*len(np.where(A==idA)[0])
Hx = Hx - (idAOccurCount/total)*math.log(idAOccurCount/total+eps,2)
Hy = 0
for idB in B_ids:
idBOccurCount = 1.0*len(np.where(B==idB)[0])
Hy = Hy - (idBOccurCount/total)*math.log(idBOccurCount/total+eps,2)
MIhat = 2.0*MI/(Hx+Hy)
return MIhat if __name__ == '__main__':
A = np.array([1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3])
B = np.array([1,2,1,1,1,1,1,2,2,2,2,3,1,1,3,3,3])
print NMI(A,B)
print metrics.normalized_mutual_info_score(A,B) 原文:https://blog.csdn.net/DreamHome_S/article/details/78379635
# coding=utf-8
import numpy as np
import math
def NMI(A,B):
# len(A) should be equal to len(B)
total = len(A)
A_ids = set(A)
B_ids = set(B)
#Mutual information
MI = 0
eps = 1.4e-45
for idA in A_ids:
for idB in B_ids:
idAOccur = np.where(A==idA)
idBOccur = np.where(B==idB)
idABOccur = np.intersect1d(idAOccur,idBOccur)
px = 1.0*len(idAOccur[0])/total
py = 1.0*len(idBOccur[0])/total
pxy = 1.0*len(idABOccur)/total
MI = MI + pxy*math.log(pxy/(px*py)+eps,2)
# Normalized Mutual information
Hx = 0
for idA in A_ids:
idAOccurCount = 1.0*len(np.where(A==idA)[0])
Hx = Hx - (idAOccurCount/total)*math.log(idAOccurCount/total+eps,2)
Hy = 0
for idB in B_ids:
idBOccurCount = 1.0*len(np.where(B==idB)[0])
Hy = Hy - (idBOccurCount/total)*math.log(idBOccurCount/total+eps,2)
MIhat = 2.0*MI/(Hx+Hy)
return MIhat if __name__ == '__main__':
A = np.array([1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3])
B = np.array([1,2,1,1,1,1,1,2,2,2,2,3,1,1,3,3,3])
print (NMI(A,B))

网上找到的代码

结果:0.36456

这一篇博文写的不错

自己编写了一个,同时做了排序处理

# coding=utf-8
import numpy as np
import math
import operator def NMI(A,B):
# len(A) should be equal to len(B)
total = len(A)
A_ids = set(A)
B_ids = set(B)
#Mutual information
MI = 0
eps = 1.4e-45
for idA in A_ids:
for idB in B_ids:
idAOccur = np.where(A==idA)
idBOccur = np.where(B==idB)
idABOccur = np.intersect1d(idAOccur,idBOccur)
px = 1.0*len(idAOccur[0])/total
py = 1.0*len(idBOccur[0])/total
pxy = 1.0*len(idABOccur)/total
MI = MI + pxy*math.log(pxy/(px*py)+eps,2)
# Normalized Mutual information
Hx = 0
for idA in A_ids:
idAOccurCount = 1.0*len(np.where(A==idA)[0])
Hx = Hx - (idAOccurCount/total)*math.log(idAOccurCount/total+eps,2)
Hy = 0
for idB in B_ids:
idBOccurCount = 1.0*len(np.where(B==idB)[0])
Hy = Hy - (idBOccurCount/total)*math.log(idBOccurCount/total+eps,2)
MIhat = 2.0*MI/(Hx+Hy)
return MIhat if __name__ == '__main__':
A = np.array([1,1,1])
B = np.array([2,3,4])
C = np.array([1,1,6])
print(NMI(A,B))
m=[]#包含了位置的互信息
n=[]#只有互信息
dic={}
q=1
m.append(NMI(A,B))
m.append(NMI(B,C))
m.append(NMI(A,C)) for i in m:
dic['第{}个互信息'.format(q)]='{}'.format(i)
q=q+1
print(dic)
rankdata=sorted(dic.items(),key=operator.itemgetter(1),reverse=True)
print(rankdata)

实验结果如图

NMI计算的更多相关文章

  1. 前端极易被误导的css选择器权重计算及css内联样式的妙用技巧

    记得大学时候,专业课的网页设计书籍里面讲过css选择器权重的计算:id是100,class是10,html标签是5等等,然后全部加起来的和进行比较... 我只想说:真是误人子弟,害人不浅! 最近,在前 ...

  2. 分享一个SQLSERVER脚本(计算数据库中各个表的数据量和每行记录所占用空间)

    分享一个SQLSERVER脚本(计算数据库中各个表的数据量和每行记录所占用空间) 很多时候我们都需要计算数据库中各个表的数据量和每行记录所占用空间 这里共享一个脚本 CREATE TABLE #tab ...

  3. C语言 · 薪水计算

    问题描述 编写一个程序,计算员工的周薪.薪水的计算是以小时为单位,如果在一周的时间内,员工工作的时间不超过40 个小时,那么他/她的总收入等于工作时间乘以每小时的薪水.如果员工工作的时间在40 到50 ...

  4. C语言 · 阶乘计算 · 基础练习

    问题描述 输入一个正整数n,输出n!的值. 其中n!=1*2*3*-*n. 算法描述 n!可能很大,而计算机能表示的整数范围有限,需要使用高精度计算的方法.使用一个数组A来表示一个大整数a,A[0]表 ...

  5. C语言 · 最大值与最小值计算

    输入11个整数,计算它们的最大值和最小值. 样例输入 0 1 2 3 4 5 6 7 8 9 10 样例输出 10 0   #include<stdio.h> int main(){ ]; ...

  6. 无法向会话状态服务器发出会话状态请求。请确保 ASP.NET State Service (ASP.NET 状态服务)已启动,并且客户端端口与服务器端口相同。如果服务器位于远程计算机上,请检查。。。

    异常处理汇总-服 务 器 http://www.cnblogs.com/dunitian/p/4522983.html 无法向会话状态服务器发出会话状态请求.请确保 ASP.NET State Ser ...

  7. SQL Server-聚焦计算列或计算列持久化查询性能(二十二)

    前言 上一节我们详细讲解了计算列以及计算列持久化的问题,本节我们依然如前面讲解来看看二者查询性能问题,简短的内容,深入的理解,Always to review the basics. 持久化计算列比非 ...

  8. SQL Server-聚焦计算列持久化(二十一)

    前言 上一节我们结束了Hash Match Aggregate和Stream Aggregate的讲解,本系列我们来讲讲关于SQL Server中的计算列问题,简短的内容,深入的理解,Always t ...

  9. javascript:逆波兰式表示法计算表达式结果

    逆波兰式表示法,是由栈做基础的表达式,举个例子: 5 1 2 + 4 * + 3 -  等价于   5 + ((1 + 2) * 4) - 3 原理:依次将5 1 2 压入栈中, 这时遇到了运算符 + ...

随机推荐

  1. P1026 翻硬币

    题目描述 小明正在玩一个"翻硬币"的游戏.桌上放着排成一排的若干硬币.我们用 * 表示正面,用 o 表示反面(是小写字母,不是零). 比如,可能情形是:**oo***oooo 如果 ...

  2. Vue基础练习之计算属性、方法、监听器

    <body> <div id="root"> {{fullName()}} {{age}} </div> <script> var ...

  3. 深度学习——GAN

    整理自: https://blog.csdn.net/woaidapaopao/article/details/77806273?locationnum=9&fps=1 思想 表达式 实际计算 ...

  4. 【62.89%】【BZOJ 1072】[SCOI2007]排列perm

    Time Limit: 10 Sec  Memory Limit: 128 MB Submit: 1862  Solved: 1171 [Submit][Status][Discuss] Descri ...

  5. 2019-5-12-WPF-模拟触摸设备

    title author date CreateTime categories WPF 模拟触摸设备 lindexi 2019-05-12 16:19:32 +0800 2019-5-11 17:2: ...

  6. WPF TreeView 展开到指定节点

    最近在做一个交换机管理的项目,有一个交换机的树,做树的搜索的时候 展开节点居然有点难,自己记录下来 ,以后用的到的时候可以看一下. 展开代码如下,其中 SwitchTree是treeview空间的名称 ...

  7. boostrap-非常好用但是容易让人忽略的地方【4】:Font Awesome

    font-awesome基本用法 官方代码传送门 font-awesome在bootstrap中的特殊用法(这个才是重点) 要点归纳1(官方) 官方代码传送门 要点归纳2(我的) <a href ...

  8. js实现php函数urlencode

    原文链接:https://www.cnblogs.com/xiaochaohuashengmi/archive/2010/05/28/1746168.html 本文介绍了php函数urlencode的 ...

  9. monorepo仓库管理方式探秘

    前言 随着功能和业务量级的飙升,前端代码量级也越来越大,管理运维的成本也进一步增加. 代码仓库的运营管理挑战也浮出水面. 主流方案有两种:一是multirepo式的分散式的独立仓库,二是monorep ...

  10. 聊一聊 MySQL 中的事务及其实现原理

    说到数据库,那就一定会聊到事务,事务也是面试中常问的问题,我们先来一个面试场景: 面试官:"事务的四大特性是什么?" 我:"ACID,即原子性(Atomicity).隔离 ...