动手学习pytorch——(2)softmax和分类模型
内容太多,捡重要的讲。
在分类问题中,通常用离散的数值表示类别,这里存在两个问题。1.输出值的范围不确定,很难判断值的意义。2.真实标签是离散值,这些离散值与不确定的范围的输出值之间的误差难以衡量。
softmax运算符解决了这两个问题。它把输出值变成了值为正且和为1的概率分布。
对于一个分类问题,假设有a个特征,b个样本,c个输出,单层的全连接网络,那么有a*b个w(权重),c个b(偏差)。
为了提升计算效率,常对小批量数据做矢量计算。softmax回归的矢量计算表达式如下。
计算loss用交叉熵损失函数,如下:
最后讲讲softmax的简洁实现:
import torch
from torch import nn
from torch.nn import init
import numpy as np
import sys
sys.path.append("/home/kesci/input")
import d2lzh1981 as d2l
from collections import OrderedDict batch_size = 256
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size) num_inputs = 784
num_outputs = 10 class LinearNet(nn.Module):
def __init__(self, num_inputs, num_outputs):
super(LinearNet, self).__init__()
self.linear = nn.Linear(num_inputs, num_outputs)
def forward(self, x): # x 的形状: (batch, 1, 28, 28)
y = self.linear(x.view(x.shape[0], -1))
return y class FlattenLayer(nn.Module):
def __init__(self):
super(FlattenLayer, self).__init__()
def forward(self, x): # x 的形状: (batch, *, *, ...)
return x.view(x.shape[0], -1) net = nn.Sequential(
# FlattenLayer(),
# LinearNet(num_inputs, num_outputs)
OrderedDict([
('flatten', FlattenLayer()),
('linear', nn.Linear(num_inputs, num_outputs))]) init.normal_(net.linear.weight, mean=0, std=0.01) #参数初始化
init.constant_(net.linear.bias, val=0) loss = nn.CrossEntropyLoss()
optimizer = torch.optim.SGD(net.parameters(), lr=0.1)
num_epochs = 5 d2l.train_ch3(net, train_iter, test_iter, loss, num_epochs, batch_size, None, None, optimizer)
代码摘自平台。
动手学习pytorch——(2)softmax和分类模型的更多相关文章
- softmax和分类模型
softmax和分类模型 内容包含: softmax回归的基本概念 如何获取Fashion-MNIST数据集和读取数据 softmax回归模型的从零开始实现,实现一个对Fashion-MNIST训练集 ...
- L2 Softmax与分类模型
softmax和分类模型 内容包含: softmax回归的基本概念 如何获取Fashion-MNIST数据集和读取数据 softmax回归模型的从零开始实现,实现一个对Fashion-MNIST训练集 ...
- [ DLPytorch ] 线性回归&Softmax与分类模型&多层感知机
线性回归 基础知识 实现过程 学习笔记 批量读取 torch_data = Data.TensorDataset(features, labels) dataset = Data.DataLoader ...
- NLP学习(2)----文本分类模型
实战:https://github.com/jiangxinyang227/NLP-Project 一.简介: 1.传统的文本分类方法:[人工特征工程+浅层分类模型] (1)文本预处理: ①(中文) ...
- 动手学习pytorch——(1)线性回归
最近参加了伯禹教育的动手学习深度学习项目,现在对第一章(线性回归)部分进行一个总结. 这里从线性回归模型之从零开始的实现和使用pytorch的简洁两个部分进行总结. 损失函数,选取平方函数来评估误差, ...
- 【动手学pytorch】softmax回归
一.什么是softmax? 有一个数组S,其元素为Si ,那么vi 的softmax值,就是该元素的指数与所有元素指数和的比值.具体公式表示为: softmax回归本质上也是一种对数据的估计 二.交叉 ...
- 动手学习Pytorch(4)--过拟合欠拟合及其解决方案
过拟合.欠拟合及其解决方案 过拟合.欠拟合的概念 权重衰减 丢弃法 模型选择.过拟合和欠拟合 训练误差和泛化误差 在解释上述现象之前,我们需要区分训练误差(training error)和泛化误差 ...
- 动手学习Pytorch(6)--卷积神经网络基础
卷积神经网络基础 本节我们介绍卷积神经网络的基础概念,主要是卷积层和池化层,并解释填充.步幅.输入通道和输出通道的含义. 二维卷积层 本节介绍的是最常见的二维卷积层,常用于处理图像数据. 二维 ...
- 动手学习Pytorch(7)--LeNet
Convolutional Neural Networks 使用全连接层的局限性: 图像在同一列邻近的像素在这个向量中可能相距较远.它们构成的模式可能难以被模型识别. 对于大尺寸的输入图像,使用全连接 ...
随机推荐
- Netty 的基本简单实例【服务端-客户端通信】
Netty是建立在NIO基础之上,Netty在NIO之上又提供了更高层次的抽象. 在Netty里面,Accept连接可以使用单独的线程池去处理,读写操作又是另外的线程池来处理. Accept连接和读写 ...
- 【转】8 个效果惊人的 WebGL/JavaScript 演示
英文原文:9 IMPRESSIVE WEBGL JAVASCRIPT EFFECT SHOWCASE,翻译:iteye WebGL 是一种 3D 绘图标准,这种绘图技术标准允许把 JavaScript ...
- i3s 一种开源的三维地理数据规范 简单解读
i3s,esri主推到ogc的一种三维开源GIS数据标准. 版权声明:原创.博客园/B站/小专栏/知乎/CSDN @秋意正寒 转载请标注原地址并声明转载: https://www.cnblogs.co ...
- kettle连接oracle数据库报错,ORA-12505
报错信息: Error connecting to database: (using class oracle.jdbc.driver.OracleDriver) Listener refused t ...
- C++中全排列函数next_permutation 用法
今天蓝桥杯刷题时发现一道字符串排序问题,突然想起next_permutation()函数和prev_permutation()函数. 就想写下next_permutation()的用法 next_pe ...
- 2、Vue实战-配置篇-npm配置
引言: 如果刚开始使用 vue 并不了解 nodejs.npm 相关知识可以看我上一篇的实践,快速入门了解实战知识树. Vue实战-入门篇 上篇反思: 1.新的关注点:开发 vue 模板.如何使用本地 ...
- 元素定位工具Weditor的使用
(1).安装:pip install --pre --upgrade weditor 安装成功 (2).启动python -m weditor
- 关于neo4j初入门(1)
图形数据库也称为图形数据库管理系统或GDBMS. Neo4j的官方网站:http://www.neo4j.org Neo4j的优点 它很容易表示连接的数据 检索/遍历/导航更多的连接数据是非常容易和快 ...
- Java入门 - 高级教程 - 02.集合
原文地址:http://www.work100.net/training/java-collection.html 更多教程:光束云 - 免费课程 集合 序号 文内章节 视频 1 概述 2 集合接口 ...
- [题解][Codeforces]Good Bye 2019 简要题解
构造题好评,虽然这把崩了 原题解 A 题意 二人游戏,一个人有 \(k_1\) 张牌,另一个人 \(k_2\) 张,满足 \(2\le k_1+k_2=n\le 100\),每张牌上有一个数,保证所有 ...