KD-Tree,用来解决多维空间中的问题,其实就是优化暴力(逃

一般cdq能做的它都能做,而且。。。既然是优化暴力,那就学习一下了

对与几个n维点,我们将它每一维分割,建立一颗二叉树,方便我们搜索剪枝

它好像插入比较麻烦,和替罪羊一样暴力重构,博主蒟蒻不会啦

KD-Tree能解决的问题:平面上点对最小,最大距离,k大距离(包括曼哈顿距离和欧式距离)

当然这是我的理解,可能会有偏差

KD-Tree基本模板:

struct node{
int d[2],l,r,mx[2],mn[2],id;
friend bool operator < (node a,node b){
return a.d[now]<b.d[now];
}
}ask,tr[MAXN];
struct KD_TREE{
void update(int x){
int l=tr[x].l,r=tr[x].r;
for(int i=0;i<=1;i++){
tr[x].mn[i]=tr[x].mx[i]=tr[x].d[i];
if(l!=0){
tr[x].mn[i]=min(tr[x].mn[i],tr[l].mn[i]);
tr[x].mx[i]=max(tr[x].mx[i],tr[l].mx[i]);
}
if(r!=0){
tr[x].mn[i]=min(tr[x].mn[i],tr[r].mn[i]);
tr[x].mx[i]=max(tr[x].mx[i],tr[r].mx[i]);
}
}
}
int dis(node a,node b){
int res=0;
for(int i=0;i<=1;i++){
res+=power(a.d[i]-b.d[i]);
}
return res;
}
int get_dis(node a){
int res=0;
for(int i=0;i<=1;i++){
res+=max(power(a.mx[i]-ask.d[i]),power(a.mn[i]-ask.d[i]));
}
return res;
}
void build(int &rt,int l,int r,int d){
int mid=(l+r)>>1;
now=d;
nth_element(tr+l,tr+mid,tr+r+1);
if(l<mid) build(tr[mid].l,l,mid-1,d^1);
if(r>mid) build(tr[mid].r,mid+1,r,d^1);
update(mid);
rt=mid;
}
void query(int x){
if(!x) return ;
int sum_l=inf,sum_r=inf,dist=dis(tr[x],ask);
if(tr[x].l) sum_l=get_dis(tr[tr[x].l]);
if(tr[x].r) sum_r=get_dis(tr[tr[x].r]);
if(dist>-q.top()){
q.pop();
q.push(-dist);
}
if(sum_l>sum_r){
if(sum_l>=-q.top()) query(tr[x].l);
if(sum_r>=-q.top()) query(tr[x].r);
}else{
if(sum_r>=-q.top()) query(tr[x].r);
if(sum_l>=-q.top()) query(tr[x].l);
}
}
}KD_Tree;

其中dis和get_dis是随题而定,其他的基本不变

例题:Hide and Seek

题目大意:给出平面内几个点的坐标,求曼哈顿距离最小值

挺水的,上代码:

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
#define MAXN 500005
#define inf 0x7fffffff
using namespace std;
int read(){
int x=0;char ch=getchar();
while(ch<'0'||ch>'9'){ch=getchar();}
while(ch>='0'&&ch<='9'){x=(x<<1)+(x<<3)+ch-'0';ch=getchar();}
return x;
}
int max(int a,int b){return a>b?a:b;}
int min(int a,int b){return a<b?a:b;}
int abs(int a){return a<0?-a:a;}
int n,now,root,ans=inf;
struct node{
int d[2],l,r,mx[2],mn[2];
friend bool operator < (node a,node b){
return a.d[now]<b.d[now];
}
friend int dis(node a,node b){
return abs(a.d[0]-b.d[0])+abs(a.d[1]-b.d[1]);
}
}tr[MAXN];
struct KD_TREE{
node p[MAXN],t;
int ans;
private:
void update(int x){
int l=p[x].l,r=p[x].r;
for(int i=0;i<=1;i++){
if(l!=0){
p[x].mn[i]=min(p[x].mn[i],p[l].mn[i]);
p[x].mx[i]=max(p[x].mx[i],p[l].mx[i]);
}
if(r!=0){
p[x].mn[i]=min(p[x].mn[i],p[r].mn[i]);
p[x].mx[i]=max(p[x].mx[i],p[r].mx[i]);
}
}
}
int get_min(node x){
int sum=0;
for(int i=0;i<=1;i++){
sum+=max(x.mn[i]-t.d[i],0);
sum+=max(t.d[i]-x.mx[i],0);
}
return sum;
}
int get_max(node x){
int sum=0;
for(int i=0;i<=1;i++){
sum+=max(abs(x.mn[i]-t.d[i]),abs(x.mx[i]-t.d[i]));
}
return sum;
}
public:
void build(int &rt,int l,int r,int d){
int mid=l+r>>1;
now=d;
nth_element(tr+l,tr+mid,tr+r+1);
p[mid]=tr[mid];
for(int i=0;i<=1;i++)
p[mid].mx[i]=p[mid].mn[i]=p[mid].d[i];
if(l<mid) build(p[mid].l,l,mid-1,d^1);
if(r>mid) build(p[mid].r,mid+1,r,d^1);
update(mid);
rt=mid;
}
void query_min(int k){
int dist=dis(p[k],t);
if(dist) ans=min(ans,dist);
int sum_l=inf,sum_r=inf;
if(p[k].l) sum_l=get_min(p[p[k].l]);
if(p[k].r) sum_r=get_min(p[p[k].r]);
if(sum_l>sum_r){
if(sum_r<ans) query_min(p[k].r);
if(sum_l<ans) query_min(p[k].l);
}else{
if(sum_l<ans) query_min(p[k].l);
if(sum_r<ans) query_min(p[k].r);
}
}
void query_max(int k){
ans=max(ans,dis(p[k],t));
int sum_l=-inf,sum_r=-inf;
if(p[k].l) sum_l=get_max(p[p[k].l]);
if(p[k].r) sum_r=get_max(p[p[k].r]);
if(sum_l>sum_r){
if(sum_l>ans) query_max(p[k].l);
if(sum_r>ans) query_max(p[k].r);
}else{
if(sum_r>ans) query_max(p[k].r);
if(sum_l>ans) query_max(p[k].l);
}
}
}KD_Tree;
int main(){
n=read();
for(int i=1;i<=n;i++){
tr[i].d[0]=read();
tr[i].d[1]=read();
}
KD_Tree.build(root,1,n,0);
for(int i=1;i<=n;i++){
KD_Tree.t=tr[i];
KD_Tree.ans=inf;
KD_Tree.query_min(root);
int minn=KD_Tree.ans;
KD_Tree.ans=-inf;
KD_Tree.query_max(root);
int maxx=KD_Tree.ans;
ans=min(ans,maxx-minn);
}
printf("%d\n",ans);
return 0;
}

例题:JZPFAR:

题目大意:给定平面上n个点坐标以及m次询问,每一次输出欧式距离距目标点第k大的点的标号

跟上一个差不多,估价函数变了,

第k大的话,维护一个有k个元素的堆,每次有更优的就pop队顶,最终top就是答案

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
#include<queue>
#define MAXN 500005
#define inf 0x7fffffff
#define int long long
using namespace std;
int read(){
int x=0,f=1;char ch=getchar();
while(ch<'0'||ch>'9'){if(ch=='-') f=-1;ch=getchar();}
while(ch>='0'&&ch<='9'){x=(x<<1)+(x<<3)+ch-'0';ch=getchar();}
return x*f;
}
int max(int a,int b){return a>b?a:b;}
int min(int a,int b){return a<b?a:b;}
int abs(int a){return a<0?-a:a;}
int power(int a){return a*a;}
int n,m,now,root,k;
struct data{
int dis,id;
friend bool operator < (data a,data b){
return a.dis==b.dis?a.id<a.id:a.dis>b.dis;
}
};
priority_queue< data > q;
struct node{
int d[2],l,r,mx[2],mn[2],id;
friend bool operator < (node a,node b){
return a.d[now]<b.d[now];
}
}ask,tr[MAXN],p[MAXN];
struct KD_TREE{
private:
void update(int x){
int l=tr[x].l,r=tr[x].r;
for(int i=0;i<=1;i++){
tr[x].mn[i]=tr[x].mx[i]=tr[x].d[i];
if(l!=0){
tr[x].mn[i]=min(tr[x].mn[i],tr[l].mn[i]);
tr[x].mx[i]=max(tr[x].mx[i],tr[l].mx[i]);
}
if(r!=0){
tr[x].mn[i]=min(tr[x].mn[i],tr[r].mn[i]);
tr[x].mx[i]=max(tr[x].mx[i],tr[r].mx[i]);
}
}
}
int dis(node a,node b){
int res=0;
for(int i=0;i<=1;i++){
res+=power(a.d[i]-b.d[i]);
}
return res;
}
int calc(int x){
if(x==0) return -2;
int res=0;
for(int i=0;i<=1;i++){
res+=max(power(tr[x].mx[i]-ask.d[i]),power(tr[x].mn[i]-ask.d[i]));
}
return res;
}
public:
void build(int &rt,int l,int r,int d){
int mid=(l+r)>>1;
now=d;
nth_element(p+l,p+mid,p+r+1);
tr[mid]=p[mid];
if(l<mid) build(tr[mid].l,l,mid-1,d^1);
if(r>mid) build(tr[mid].r,mid+1,r,d^1);
update(mid);
rt=mid;
}
void query(int x){
//cout<<x<<endl;
if(!x) return ;
int sum_l=calc(tr[x].l),sum_r=calc(tr[x].r),dist=dis(tr[x],ask);
//cout<<sum_l<<' '<<sum_r<<' '<<dist<<endl;
if(dist>q.top().dis||(dist==q.top().dis&&tr[x].id<q.top().id)){
q.pop();
//cout<<dist<<' '<<tr[x].id<<endl;
q.push((data){dist,tr[x].id});
}
if(sum_l>sum_r){
if(sum_l>=q.top().dis) query(tr[x].l);
if(sum_r>=q.top().dis) query(tr[x].r);
}else{
if(sum_r>=q.top().dis) query(tr[x].r);
if(sum_l>=q.top().dis) query(tr[x].l);
}
}
}KD_Tree;
signed main(){
n=read();
for(int i=1;i<=n;i++){
p[i].d[0]=read();
p[i].d[1]=read();
p[i].id=i;
}
KD_Tree.build(root,1,n,0);
//cout<<root<<endl;
m=read();
for(int i=1;i<=m;i++){
ask.d[0]=read();
ask.d[1]=read();
k=read();
while(!q.empty()) q.pop();
for(int i=1;i<=k;i++)
q.push((data){-1,0});
// q.push(make_pair(-1,0));
KD_Tree.query(root);
//cout<<q.top().first<<endl;
printf("%lld\n",q.top().id);
}
return 0;
}

进阶:K远点对

题目大意:已知平面内 N 个点的坐标,求欧氏距离下的第 K 远点对。

和上一个一样,只不过这一次我们要对每个点query一遍,

其中维护一个2k的堆(因为会重复算),最终堆顶就是答案

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
#include<queue>
#define MAXN 100005
#define inf 0x7fffffff
#define int long long
using namespace std;
int read(){
int x=0,f=1;char ch=getchar();
while(ch<'0'||ch>'9'){if(ch=='-') f=-1;ch=getchar();}
while(ch>='0'&&ch<='9'){x=(x<<1)+(x<<3)+ch-'0';ch=getchar();}
return x*f;
}
int max(int a,int b){return a>b?a:b;}
int min(int a,int b){return a<b?a:b;}
int abs(int a){return a<0?-a:a;}
int power(int a){return a*a;}
int n,m,now,root,k;
struct data{
int dis;
friend bool operator < (data a,data b){
return a.dis<b.dis;
}
};
priority_queue<int> q;
struct node{
int d[2],l,r,mx[2],mn[2],id;
friend bool operator < (node a,node b){
return a.d[now]<b.d[now];
}
}ask,tr[MAXN];
struct KD_TREE{
void update(int x){
int l=tr[x].l,r=tr[x].r;
for(int i=0;i<=1;i++){
tr[x].mn[i]=tr[x].mx[i]=tr[x].d[i];
if(l!=0){
tr[x].mn[i]=min(tr[x].mn[i],tr[l].mn[i]);
tr[x].mx[i]=max(tr[x].mx[i],tr[l].mx[i]);
}
if(r!=0){
tr[x].mn[i]=min(tr[x].mn[i],tr[r].mn[i]);
tr[x].mx[i]=max(tr[x].mx[i],tr[r].mx[i]);
}
}
}
int dis(node a,node b){
int res=0;
for(int i=0;i<=1;i++){
res+=power(a.d[i]-b.d[i]);
}
return res;
}
int get_dis(node a){
int res=0;
for(int i=0;i<=1;i++){
res+=max(power(a.mx[i]-ask.d[i]),power(a.mn[i]-ask.d[i]));
}
return res;
}
void build(int &rt,int l,int r,int d){
int mid=(l+r)>>1;
now=d;
nth_element(tr+l,tr+mid,tr+r+1);
if(l<mid) build(tr[mid].l,l,mid-1,d^1);
if(r>mid) build(tr[mid].r,mid+1,r,d^1);
update(mid);
rt=mid;
}
void query(int x){
if(!x) return ;
int sum_l=inf,sum_r=inf,dist=dis(tr[x],ask);
if(tr[x].l) sum_l=get_dis(tr[tr[x].l]);
if(tr[x].r) sum_r=get_dis(tr[tr[x].r]);
if(dist>-q.top()){
q.pop();
q.push(-dist);
}
if(sum_l>sum_r){
if(sum_l>=-q.top()) query(tr[x].l);
if(sum_r>=-q.top()) query(tr[x].r);
}else{
if(sum_r>=-q.top()) query(tr[x].r);
if(sum_l>=-q.top()) query(tr[x].l);
}
}
}KD_Tree;
signed main(){
n=read(),k=read();
for(int i=1;i<=n;i++){
tr[i].d[0]=read();
tr[i].d[1]=read();
tr[i].id=i;
}
KD_Tree.build(root,1,n,0);
for(int i=1;i<=2*k;i++) q.push(inf);
for(int i=1;i<=n;i++){
ask=tr[i];
KD_Tree.query(root);
}
printf("%lld\n",-q.top());
return 0;
}

模板:KD-Tree的更多相关文章

  1. [模板] K-D Tree

    K-D Tree K-D Tree可以看作二叉搜索树的高维推广, 它的第 \(k\) 层以所有点的第 \(k\) 维作为关键字对点做出划分. 为了保证划分均匀, 可以以第 \(k\) 维排名在中间的节 ...

  2. k-d tree模板练习

    1. [BZOJ]1941: [Sdoi2010]Hide and Seek 题目大意:给出n个二维平面上的点,一个点的权值是它到其他点的最长距离减最短距离,距离为曼哈顿距离,求最小权值.(n< ...

  3. AOJ DSL_2_C Range Search (kD Tree)

    Range Search (kD Tree) The range search problem consists of a set of attributed records S to determi ...

  4. 【BZOJ-2648&2716】SJY摆棋子&天使玩偶 KD Tree

    2648: SJY摆棋子 Time Limit: 20 Sec  Memory Limit: 128 MBSubmit: 2459  Solved: 834[Submit][Status][Discu ...

  5. BZOJ2648/2716:SJY摆棋子/[Violet]天使玩偶(K-D Tree)

    Description 这天,SJY显得无聊.在家自己玩.在一个棋盘上,有N个黑色棋子.他每次要么放到棋盘上一个黑色棋子,要么放上一个白色棋子,如果是白色棋子,他会找出距离这个白色棋子最近的黑色棋子. ...

  6. k-d tree 学习笔记

    以下是一些奇怪的链接有兴趣的可以看看: https://blog.sengxian.com/algorithms/k-dimensional-tree http://zgjkt.blog.uoj.ac ...

  7. K-D Tree

    这篇随笔是对Wikipedia上k-d tree词条的摘录, 我认为解释得相当生动详细, 是一篇不可多得的好文. Overview A \(k\)-d tree (short for \(k\)-di ...

  8. K-D Tree题目泛做(CXJ第二轮)

    题目1: BZOJ 2716 题目大意:给出N个二维平面上的点,M个操作,分为插入一个新点和询问到一个点最近点的Manhatan距离是多少. 算法讨论: K-D Tree 裸题,有插入操作. #inc ...

  9. k-d Tree in TripAdvisor

    Today, TripAdvisor held a tech talk in Columbia University. The topic is about k-d Tree implemented ...

  10. k-d tree算法

    k-d树(k-dimensional树的简称),是一种分割k维数据空间的数据结构.主要应用于多维空间关键数据的搜索(如:范围搜索和最近邻搜索). 应用背景 SIFT算法中做特征点匹配的时候就会利用到k ...

随机推荐

  1. [JZOJ3348] 【NOI2013模拟】秘密任务

    题目 题目大意 给你一个无向图,你要割掉一些边使得\(1\)到\(n\)的所有最短路径被阻截. 割掉一个边\((u,v)\)的代价为\(a_u\)或\(a_v\)(记为两种不同的方案). 问最小代价及 ...

  2. javaScript 习题总结(持续更新)

    判定偶数 function collect_all_even(collection) { return collection.filter(item => item%2 == 0); } 两个集 ...

  3. SpringBoot_05_ssm拦截器和默认欢迎页面的设置

    1.在springBoot下通过使用拦截器完成在没有登陆的前提下,不允许访问其他资源 编写拦截器,要实现HandlerInterceptor @Component public class UserI ...

  4. AutoMapper Profile用法

    using System; using System.Collections.Generic; using System.Linq; using System.Web; using AutoMappe ...

  5. HTML引入CSS的方法

    1.嵌入式 通过<style>标记,来引入CSS样式. 语法格式:<style type = “text/css”></style> 提示:<style> ...

  6. vuex的使用入门-官方用例

    store/index.js import Vue from 'vue' import Vuex from 'vuex'; // 使用vuex Vue.use(Vuex) const store = ...

  7. 激活office2016的心路历程

    先转换成VOL版本 32位的office2016用如下代码 @echo off :ADMIN openfiles >nul >nul ||( echo Set UAC = CreateOb ...

  8. neo4j中cypher语句多个模糊查询

    总结一下经验: neo4j中,cypher语句的模糊查询,好像是个正则表达式结构. 对于一个属性的多个模糊查询,可以使用如下写法: 比如,查询N类型中,属性attr包含'a1'或者'a2'的所有节点. ...

  9. FileCloud 的原理简述&自己搭建文件云

    FileCloud 的原理简述&自己搭建文件云 copyright(c) by zcy 关于如何使用IIS创建asp服务,请读者自行研究 注:不要忘记添加入站规则 代码的存储: 根目录 fil ...

  10. JavaWeb实现文件下载

    1. 编写文件上传Servlet public class FileUpload1 extends HttpServlet { @Override protected void doGet(HttpS ...