【AT3611】Tree MST
这个题的输入首先就是一棵树,我们考虑一下点分
我们对于每一个分治重心考虑一下跨过这个分治重心的连边情况
就是把当前分治区域内所有的点向距离分治重心最近的点连边
考虑一下这个算法的正确性,如果我们已经对一个联通块内部形成了一个\(mst\),我们需要把这个联通块和另外一个联通块合并
如果这个新的联通块出现会使得原来联通块的\(mst\)改变,那么新出现的边也只会是原来联通块的点和新联通块到这个点距离最近的点之间的边,而这些最近的点又都是一个,所以我们就可以大大简化连边数量了
所以这个点分的过程就相当于合并\(mst\)的过程
我们点分之后发现我们连了大概\(nlogn\)条边,于是再跑一个kruskal就好了,复杂度\(O(nlog^2n)\)
代码
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#define re register
#define LL long long
#define max(a,b) ((a)>(b)?(a):(b))
#define min(a,b) ((a)<(b)?(a):(b))
inline int read() {
char c=getchar();int x=0;while(c<'0'||c>'9') c=getchar();
while(c>='0'&&c<='9') x=(x<<3)+(x<<1)+c-48,c=getchar();return x;
}
const int maxn=2e5+5;
struct E{int v,nxt,w;}e[maxn<<1];
struct Edge{int a,b;LL c;}E[maxn*55];
int sum[maxn],vis[maxn],head[maxn],mx[maxn],a[maxn],fa[maxn],sz[maxn];
int n,num,m,dx,S,rt;LL dw,ans,pre[maxn];
inline void add(int x,int y,int z) {
e[++num].v=y;e[num].nxt=head[x];head[x]=num;e[num].w=z;
}
void getroot(int x,int fa) {
sum[x]=1,mx[x]=0;
for(re int i=head[x];i;i=e[i].nxt) {
if(vis[e[i].v]||e[i].v==fa) continue;
getroot(e[i].v,x);sum[x]+=sum[e[i].v];
mx[x]=max(mx[x],sum[e[i].v]);
}
mx[x]=max(mx[x],S-sum[x]);
if(mx[x]<mx[rt]) rt=x;
}
void getdis(int x,int fa) {
E[++m]=(Edge){dx,x,pre[x]+a[x]+dw};
for(re int i=head[x];i;i=e[i].nxt) {
if(vis[e[i].v]||e[i].v==fa) continue;
getdis(e[i].v,x);
}
}
void chk(int x,int fa) {
if(pre[x]+a[x]<dw) dw=pre[x]+a[x],dx=x;
for(re int i=head[x];i;i=e[i].nxt) {
if(vis[e[i].v]||e[i].v==fa) continue;
pre[e[i].v]=pre[x]+e[i].w;chk(e[i].v,x);
}
}
void dfs(int x) {
dx=x,dw=a[x];vis[x]=1;pre[x]=0,chk(x,0),getdis(x,0);
for(re int i=head[x];i;i=e[i].nxt) {
if(vis[e[i].v]) continue;
S=sum[e[i].v],rt=0,getroot(e[i].v,0),dfs(rt);
}
}
inline int cmp(Edge A,Edge B) {return A.c<B.c;}
inline int find(int x) {return x==fa[x]?x:fa[x]=find(fa[x]);}
inline int merge(int x,int y) {
int xx=find(x),yy=find(y);
if(xx==yy) return 0;
if(sz[xx]<sz[yy]) fa[xx]=yy,sz[yy]+=sz[xx];
else fa[yy]=xx,sz[xx]+=sz[yy];
return 1;
}
int main() {
n=read();
for(re int i=1;i<=n;i++) a[i]=read();
for(re int x,y,z,i=1;i<n;i++)
x=read(),y=read(),z=read(),add(x,y,z),add(y,x,z);
mx[0]=n+1,S=n,rt=0,getroot(1,0),dfs(rt);
std::sort(E+1,E+m+1,cmp);
for(re int i=1;i<=n;i++) sz[i]=1,fa[i]=i;
for(re int i=1;i<=m;i++) if(merge(E[i].a,E[i].b)) ans+=E[i].c;
std::cout<<ans;
return 0;
}
【AT3611】Tree MST的更多相关文章
- 【AtCoder3611】Tree MST(点分治,最小生成树)
[AtCoder3611]Tree MST(点分治,最小生成树) 题面 AtCoder 洛谷 给定一棵\(n\)个节点的树,现有有一张完全图,两点\(x,y\)之间的边长为\(w[x]+w[y]+di ...
- 【POJ3237】Tree 树链剖分+线段树
[POJ3237]Tree Description You are given a tree with N nodes. The tree's nodes are numbered 1 through ...
- 【BZOJ】【2631】Tree
LCT 又一道名字叫做Tree的题目…… 看到删边加边什么的……又是动态树问题……果断再次搬出LCT. 这题比起上道[3282]tree的难点在于需要像线段树维护区间那样,进行树上路径的权值修改&am ...
- 【Luogu1501】Tree(Link-Cut Tree)
[Luogu1501]Tree(Link-Cut Tree) 题面 洛谷 题解 \(LCT\)版子题 看到了顺手敲一下而已 注意一下,别乘爆了 #include<iostream> #in ...
- 【BZOJ3282】Tree (Link-Cut Tree)
[BZOJ3282]Tree (Link-Cut Tree) 题面 BZOJ权限题呀,良心luogu上有 题解 Link-Cut Tree班子提 最近因为NOIP考炸了 学科也炸了 时间显然没有 以后 ...
- 【AtCoder2134】ZigZag MST(最小生成树)
[AtCoder2134]ZigZag MST(最小生成树) 题面 洛谷 AtCoder 题解 这题就很鬼畜.. 既然每次连边,连出来的边的权值是递增的,所以拿个线段树xjb维护一下就可以做了.那么意 ...
- 【HDU5909】Tree Cutting(FWT)
[HDU5909]Tree Cutting(FWT) 题面 vjudge 题目大意: 给你一棵\(n\)个节点的树,每个节点都有一个小于\(m\)的权值 定义一棵子树的权值为所有节点的异或和,问权值为 ...
- 【BZOJ2654】Tree(凸优化,最小生成树)
[BZOJ2654]Tree(凸优化,最小生成树) 题面 BZOJ 洛谷 题解 这道题目是之前\(Apio\)的时候写的,忽然发现自己忘记发博客了... 这个万一就是一个凸优化, 给所有白边二分一个额 ...
- 【POJ1741】Tree(点分治)
[POJ1741]Tree(点分治) 题面 Vjudge 题目大意: 求树中距离小于\(K\)的点对的数量 题解 完全不觉得点分治了.. 简直\(GG\),更别说动态点分治了... 于是来复习一下. ...
随机推荐
- 线程池 一 ScheduledThreadPoolExecutor
java.util.concurrent public class ScheduledThreadPoolExecutor extends ThreadPoolExecutor implements ...
- delphi RTL是什么?
第一种解释: RTL Run-Time Library,支持程序运行执行的函数库.是运行时间库,在运行时需要.Delphi的RTL包括System,SysUtils,Math三个单元RTL提供的大部分 ...
- 「题解」:y
问题 B: y 时间限制: 1 Sec 内存限制: 256 MB 题面 题面谢绝公开. 题解 考虑双向搜索. 定义$cal_{i,j,k}$表示当前已经搜索状态中是否存在长度为i,终点为j,搜索过边 ...
- delphi根据不同图片生成不规则窗口的实现(仅限于BMP格式)
unit CreateImageForm; interface uses Windows, SysUtils, Variants, Classes, Graphics; procedure Creat ...
- hdu多校第七场 1011 (hdu6656) Kejin Player 概率dp
题意: 一个游戏,有许多关,到下一关要花费金钱,做出尝试,有概率成功,若成功则到达下一关,若失败则停在此关或退回到前面某关,询问第l关到第r关的期望费用 题解: 显然,第r关到第l关的费用是dp[r] ...
- gnome/KDE安装,gnome出现问题,重新安装nvdia驱动, Linux(CentOS7) NVIDIA GeForece GTX 745 显卡驱动
新安装显示gtx745驱动NVIDIA-Linux-x86_64-346.59.run, yum groupremove kde-desktop yum groupinstall "Desk ...
- SPSS单一样本的T检验
SPSS单一样本的T检验 如果已知总体均数,进行样本均数与总体均数之间的差异显著性检验属于单一样本的T检验.在SPSS中,单一样本的T检验由"One-Sample T Test"过 ...
- LightOJ-1282-Leading and Trailing-快速幂+数学
You are given two integers: n and k, your task is to find the most significant three digits, and lea ...
- ES6 学习 -- 箭头函数(=>)
(1).只有一个参数且只有一句表达式语句的,函数表达式的花括号可以不写let test = a => a; // 只有一个参数a,这里的表达式相当于 "return a" ( ...
- Android开发 SeekBar开发记录
前言 开发记录博客不是讲解使用博客,更多的是各种功能与点子的记录 基本使用 <SeekBar android:layout_width="match_parent" andr ...