题目

这个题的输入首先就是一棵树,我们考虑一下点分

我们对于每一个分治重心考虑一下跨过这个分治重心的连边情况

就是把当前分治区域内所有的点向距离分治重心最近的点连边

考虑一下这个算法的正确性,如果我们已经对一个联通块内部形成了一个\(mst\),我们需要把这个联通块和另外一个联通块合并

如果这个新的联通块出现会使得原来联通块的\(mst\)改变,那么新出现的边也只会是原来联通块的点和新联通块到这个点距离最近的点之间的边,而这些最近的点又都是一个,所以我们就可以大大简化连边数量了

所以这个点分的过程就相当于合并\(mst\)的过程

我们点分之后发现我们连了大概\(nlogn\)条边,于是再跑一个kruskal就好了,复杂度\(O(nlog^2n)\)

代码

#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#define re register
#define LL long long
#define max(a,b) ((a)>(b)?(a):(b))
#define min(a,b) ((a)<(b)?(a):(b))
inline int read() {
char c=getchar();int x=0;while(c<'0'||c>'9') c=getchar();
while(c>='0'&&c<='9') x=(x<<3)+(x<<1)+c-48,c=getchar();return x;
}
const int maxn=2e5+5;
struct E{int v,nxt,w;}e[maxn<<1];
struct Edge{int a,b;LL c;}E[maxn*55];
int sum[maxn],vis[maxn],head[maxn],mx[maxn],a[maxn],fa[maxn],sz[maxn];
int n,num,m,dx,S,rt;LL dw,ans,pre[maxn];
inline void add(int x,int y,int z) {
e[++num].v=y;e[num].nxt=head[x];head[x]=num;e[num].w=z;
}
void getroot(int x,int fa) {
sum[x]=1,mx[x]=0;
for(re int i=head[x];i;i=e[i].nxt) {
if(vis[e[i].v]||e[i].v==fa) continue;
getroot(e[i].v,x);sum[x]+=sum[e[i].v];
mx[x]=max(mx[x],sum[e[i].v]);
}
mx[x]=max(mx[x],S-sum[x]);
if(mx[x]<mx[rt]) rt=x;
}
void getdis(int x,int fa) {
E[++m]=(Edge){dx,x,pre[x]+a[x]+dw};
for(re int i=head[x];i;i=e[i].nxt) {
if(vis[e[i].v]||e[i].v==fa) continue;
getdis(e[i].v,x);
}
}
void chk(int x,int fa) {
if(pre[x]+a[x]<dw) dw=pre[x]+a[x],dx=x;
for(re int i=head[x];i;i=e[i].nxt) {
if(vis[e[i].v]||e[i].v==fa) continue;
pre[e[i].v]=pre[x]+e[i].w;chk(e[i].v,x);
}
}
void dfs(int x) {
dx=x,dw=a[x];vis[x]=1;pre[x]=0,chk(x,0),getdis(x,0);
for(re int i=head[x];i;i=e[i].nxt) {
if(vis[e[i].v]) continue;
S=sum[e[i].v],rt=0,getroot(e[i].v,0),dfs(rt);
}
}
inline int cmp(Edge A,Edge B) {return A.c<B.c;}
inline int find(int x) {return x==fa[x]?x:fa[x]=find(fa[x]);}
inline int merge(int x,int y) {
int xx=find(x),yy=find(y);
if(xx==yy) return 0;
if(sz[xx]<sz[yy]) fa[xx]=yy,sz[yy]+=sz[xx];
else fa[yy]=xx,sz[xx]+=sz[yy];
return 1;
}
int main() {
n=read();
for(re int i=1;i<=n;i++) a[i]=read();
for(re int x,y,z,i=1;i<n;i++)
x=read(),y=read(),z=read(),add(x,y,z),add(y,x,z);
mx[0]=n+1,S=n,rt=0,getroot(1,0),dfs(rt);
std::sort(E+1,E+m+1,cmp);
for(re int i=1;i<=n;i++) sz[i]=1,fa[i]=i;
for(re int i=1;i<=m;i++) if(merge(E[i].a,E[i].b)) ans+=E[i].c;
std::cout<<ans;
return 0;
}

【AT3611】Tree MST的更多相关文章

  1. 【AtCoder3611】Tree MST(点分治,最小生成树)

    [AtCoder3611]Tree MST(点分治,最小生成树) 题面 AtCoder 洛谷 给定一棵\(n\)个节点的树,现有有一张完全图,两点\(x,y\)之间的边长为\(w[x]+w[y]+di ...

  2. 【POJ3237】Tree 树链剖分+线段树

    [POJ3237]Tree Description You are given a tree with N nodes. The tree's nodes are numbered 1 through ...

  3. 【BZOJ】【2631】Tree

    LCT 又一道名字叫做Tree的题目…… 看到删边加边什么的……又是动态树问题……果断再次搬出LCT. 这题比起上道[3282]tree的难点在于需要像线段树维护区间那样,进行树上路径的权值修改&am ...

  4. 【Luogu1501】Tree(Link-Cut Tree)

    [Luogu1501]Tree(Link-Cut Tree) 题面 洛谷 题解 \(LCT\)版子题 看到了顺手敲一下而已 注意一下,别乘爆了 #include<iostream> #in ...

  5. 【BZOJ3282】Tree (Link-Cut Tree)

    [BZOJ3282]Tree (Link-Cut Tree) 题面 BZOJ权限题呀,良心luogu上有 题解 Link-Cut Tree班子提 最近因为NOIP考炸了 学科也炸了 时间显然没有 以后 ...

  6. 【AtCoder2134】ZigZag MST(最小生成树)

    [AtCoder2134]ZigZag MST(最小生成树) 题面 洛谷 AtCoder 题解 这题就很鬼畜.. 既然每次连边,连出来的边的权值是递增的,所以拿个线段树xjb维护一下就可以做了.那么意 ...

  7. 【HDU5909】Tree Cutting(FWT)

    [HDU5909]Tree Cutting(FWT) 题面 vjudge 题目大意: 给你一棵\(n\)个节点的树,每个节点都有一个小于\(m\)的权值 定义一棵子树的权值为所有节点的异或和,问权值为 ...

  8. 【BZOJ2654】Tree(凸优化,最小生成树)

    [BZOJ2654]Tree(凸优化,最小生成树) 题面 BZOJ 洛谷 题解 这道题目是之前\(Apio\)的时候写的,忽然发现自己忘记发博客了... 这个万一就是一个凸优化, 给所有白边二分一个额 ...

  9. 【POJ1741】Tree(点分治)

    [POJ1741]Tree(点分治) 题面 Vjudge 题目大意: 求树中距离小于\(K\)的点对的数量 题解 完全不觉得点分治了.. 简直\(GG\),更别说动态点分治了... 于是来复习一下. ...

随机推荐

  1. NX二次开发-C++ DeleteFile删除文件实例代码

    NX9+VS2012 #include<Windows.h> DeleteFile("D:\\1\\test123.prt"); Caesar卢尚宇 2019年7月29 ...

  2. 数据结构C++版-图

    一.概念及分类 二.图的存储结构 1.邻接矩阵 顶点: 弧: 边: 表达式语句: 2.邻接表 逆邻接表: 3.十字链表 4.邻接多重表 三.图的权值概念及遍历 权值: 图的遍历: 1.深度优先搜索 2 ...

  3. 解决ios10及以上Safari双击和双指缩放无法禁止的问题

    移动端web缩放有两种: 1.双击缩放: 2.双指手势缩放. 在iOS 10以前,iOS和Android都可以通过一行meta标签来禁止页面缩放 <meta content="widt ...

  4. iBATIS结果映射

    resultMap的元素是在iBATIS的最重要和最强大的元素.您可以通过使用iBATIS的结果映射减少高达90%的JDBC编码,在某些情况下,可以让你做JDBC不支持的事情. ResultMaps的 ...

  5. 完美解决 IE6 position:fixed 固定定位问题

    关于 position:fixed; 属性 生成绝对定位的元素,相对于浏览器窗口进行定位. 元素的位置通过 “left”, “top”, “right” 以及 “bottom” 属性进行规定. pos ...

  6. C++中的指针(*)、引用(&)、const详解(一、定义变量)

    一.前言 本人作为一个工作了5年的程序员,程序生涯最初是从c/c++开始的,但是始终不能很熟悉的理解c语言中的指针和c++中的引用,归其原因,一部分自己没有静下心来思考,一部分原因是其自身的复杂性. ...

  7. iOS开发系列-Charles

    概述 Charles相当于一个插在服务器和客户端之间的"过滤器".当客户端向服务器发起请求的时候,先到charles进行过滤,然后charles在把最终的数据发送给服务器: 注意: ...

  8. Django ORM 之基于对象、双下划线查询

    返回ORM目录 Django ORM 内容目录: 一. 基于对象的表查询 二. 基于双下划线的查询 三. 聚合查询 aggregate 四. 分组查询 annotate 一. 基于对象的表查询 1.正 ...

  9. 【JDK】:java.lang.Integer源码解析

    本文对JDK8中的java.lang.Integer包装类的部分数值缓存技术.valueOf().stringSize().toString().getChars().parseInt()等进行简要分 ...

  10. Google Projectsheet Planning 插件的WBS

    生成 WBS的序列號 在 Sldebar中的 "WBS" 按鈕: "< WBS" 取消下級目錄 "WBS >" 生成下級目錄 G ...